研究生: |
吳柄村 Wu, Bing-Tsun |
---|---|
論文名稱: |
鈣鈦礦與鐵磁層交互作用與磁阻元件製作 Interaction between perovskite and ferromagnetic layer for magnetoresistance devices |
指導教授: |
林文欽
Lin, Wen-Chin |
口試委員: | 洪振湧 李亞儒 |
口試日期: | 2021/06/16 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 鈣鈦礦 、鐵磁材料 、交互作用 、磁阻 |
英文關鍵詞: | perovskite, CsPbBr3, MAPbBr3, magnetoresistance |
研究方法: | 實驗設計法 、 準實驗設計法 、 現象學 、 比較研究 、 文件分析法 、 現象分析 |
DOI URL: | http://doi.org/10.6345/NTNU202100521 |
論文種類: | 學術論文 |
相關次數: | 點閱:281 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在先前的研究中,我們發現在FePd薄膜上成長的MAPbBr3會是離散圓盤狀的鈣鈦礦,對於製作元件來說這會導致裸露的FePd薄膜讓電子直接短路,於是在本研究中我們利用了氧化鋁(AlOx)作為插層,在鈣鈦礦MAPbBr3與鐵磁層Co和Fe中間插入AlOx薄膜,成功成長出連續性且均勻的MAPbBr3薄膜,根據原子力顯微鏡顯示其粗糙度約為15 nm,磁光柯爾顯微鏡的結果也顯示出旋塗上MAPbBr3薄膜不會對下方鐵磁層磁性有所影響。在近期的研究顯示出CsPbBr3相對於MAPbBr3具有較高的熱穩定性,且我們發現CsPbBr3旋塗於金屬層上為連續均勻的薄膜。根據上述的結果,鈣鈦礦CsPbBr3可能具有高的應用潛力。因此我們對於CsPbBr3與鐵磁層的交互作用進行研究。我們在方格陣列Co薄膜厚度分別為6 nm、10 nm、12 nm與16 nm旋塗上CsPbBr3,此四種樣品在旋塗CsPbBr3前後的矯頑場均無改變,接著觀察到6 nm與10 nm樣品的矯頑場會隨著第一次雷射光照射的時間有逐漸降低的趨勢,其中10 nm的樣品在照射24分鐘後會量測不到磁性,然後在關閉雷射後放置一小時並再次照光30分鐘後,此時的矯頑場會提升至74.5 Oe,而12 nm與16 nm的樣品則有相反的現象,在雷射光照射下,樣品的矯頑場會隨著雷射照射時間有逐漸增加的趨勢,其中12 nm的樣品在照射28分鐘後會量測不到磁性,而在關閉雷射一段時間後矯頑場會提升至150 Oe,從結果也能發現當雷射光照射時,如果矯頑場有變化且磁性還能被量測到的樣品,在放置一段時間後,矯頑場並不會有回復的特性,根據原子力顯微鏡也能觀察到當給予兩次30分鐘的雷射照光時,粗糙度會從17.9 nm提升至22 nm與27.6 nm。因此,我們推測藍光雷射的照射會改變CsPbBr3的特性,同時也會改變下方的磁性金屬層。
In the previous study, we knew that MAPbBr3 grown on FePd film would be a discrete disc-shaped structure. For device production, this will cause the exposed FePd film to directly short-circuit the electrons. Because of this reason, we used aluminum oxide (AlOx) as an interlayer. We inserted an AlOx film between the MAPbBr3 and the ferromagnetic layer for Co and Fe. The results showed that a continuous and uniform MAPbBr3 film was successfully grown on AlOx film. According to the atomic force microscope results, the roughness of MAPbBr3 was about 15 nm. Also, magneto-optical Kerr effect microscope showed that spin-coated MAPbBr3 will not affect the magnetic properties of the underlying ferromagnetic layer. In recent studies have shown that CsPbBr3 has higher thermal stability than MAPbBr3. And we found that CsPbBr3 spin-coated on the metal layer is a continuous uniform film. Therefore, perovskite CsPbBr3 has better forward future. We study the interaction between the CsPbBr3 and the ferromagnetic layer. We spin-coated CsPbBr3 on the square array Co film which thicknesses of 6 nm, 10 nm, 12 nm and 16 nm. The magnetic coercivity of these four samples are unchanged before and after CsPbBr3 spin-coated on them. The coercivity of 6 nm and 10 nm samples would gradually decrease when first time for laser irradiate. Among them, the magnetism of 10 nm Co was unmeasured after 24 minutes of irradiation. Then after turned off laser, waited it for 1 hour and irradiated it again for 30 minutes. At this time, coercivity would increase to 74.5 Oe. The 12 nm and 16 nm samples had the opposite phenomenon. Under the laser irradiation, as the laser irradiation time increase, coercivity tended to become larger. Among them, the magnetism of 12 nm Co was unmeasured after 28 minutes of irradiation. After turning off the laser for a while, coercivity would increase to 150 Oe.
Based on these results, we presented the coercivity of Co was changed after laser irradiated, and which is no recovery when turned off the laser. According to the AFM results, we observed that when 30-minute laser beams are given twice, the roughness of CsPbBr3 would increase from 17.9 nm to 22 nm and 27.6 nm. Therefore, we speculate that the irradiation of the blue laser will change the characteristics of CsPbBr3 and change the magnetic metal layer.
[1] H. Yuan, Y. Zhao, J. Duan, Y.Wang, X. Yang and Q. Tang, All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A, 2018, 6, 24324–24329.
[2] C.Y. Huang, C. Zou, C. Mao, K.L. Corp, Y.C. Yao, Y.J. Lee, C.W. Schlenker, Alex K. Y. Jen and Lih Y. Lin, CsPbBr3 Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability. ACS Photonics 2017, 4, 2281−2289.
[3] S. Yuan, Z.K. Wang, M.P. Zhuo, Q.S. Tian, Y. Jin, and L.S. Liao, Self-Assembled High Quality CsPbBr3 Quantum Dot Films toward Highly Efficient Light-Emitting Diodes. ACS Nano 2018, 12, 9541−9548
[4] A. Mandal, A. Ghosh, S. P. Senanayak, R. H. Friend, and S. Bhattacharyya, Thickness-Attuned CsPbBr3 Nanosheets with Enhanced p‑Type Field Effect Mobility. J. Phys. Chem. Lett. 2021, 12, 1560−1566.
[5] S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, and D. Pan, Homogeneous Synthesis and Electroluminescence Device of Highly Luminescent CsPbBr3 Perovskite Nanocrystals. Inorg. Chem. 2017, 56, 2596−2601.
[6] W. Chen, X. Xin, Z. Zang, X. Tang, C. Li, W. Hu, M. Zhou, J. Du, Tunable Photoluminescence of CsPbBr3 Perovskite Quantum Dots for Light Emitting Diodes Application. Journal of Solid State Chemistry 255 (2017) 115–120.
[7] Thomson, W. (18 June 1857), "On the Electro-Dynamic Qualities of Metals:—Effects of Magnetization on the Electric Conductivity of Nickel and of Iron", Proc. Royal Soc. Lond., 8: 546–550.
[8] M. N. Baibich J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Giant Magnetoresistance of (001)Fel(001) Cr Magnetic Snperlattices. Physical Review Letters. 61 (21): 2472–2475.
[9] Kei Yosida, Magnetic Proyerties of Cu-Mn Alloys. Physical Review. 106 (5): 893.
[10] H. Yuasa, M. Yoshikawa, Y. Kamiguchi, K. Koi, H. Iwasaki, M. Takagishi, and M. Sahashi, Output enhancement of spin-valve giant magnetoresistance in current-perpendicularto-plane geometry. Journal of Applied Physics 92, 2646 (2002).
[11] J. Wang, C. Zhang, H. Liu, R. McLaughlin, Y. Zhai, S. R. Vardeny, X. Liu, S. McGill, D. Semenov, H. Guo, R. Tsuchikawa, V.V. Deshpande, D. Sun, & Z. V. Vardeny, Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. NATURE COMMUNICATIONS (2019) 10:129
[12] K. Sandeep, and C. P. Reshmi, Modulating the emission of CsPbBr3 perovskite nanocrystals via thermally varying magnetic field of La0.67Sr0.33Mn0.9(Ni/Co)0.1O3. AIP Advances 10, 035302 (2020).
[13] S.S. Yeh, S.Y. Liu, C.C. Hsu, H.C. Hung, M.C. Niu, P.H. Lo, Y.C. Chao, W.C. Lin, Discrete interfacial effects of organic lead halide perovskite coating on magnetic underlayer: MAPbBr3/FePd heterostructure. Surfaces and Interfaces 24 (2021) 101133
[14] F. Chen, C. Zhu, C. Xu, P. Fan, F. Qin, A. G. Manohari, J. Lu, Z. Shi, Q. Xu and A. Pan, Crystal structure and electron transition underlying photoluminescence of methylammonium lead bromide perovskites. J. Mater. Chem. C, 2017, 5, 7739--7745
[15] 陳均達, 鈷鐵硼薄膜的磁光柯爾效應及鐵磁共振研究. 國立臺灣師範大學,物理研究所, 一百零一年.
[16] S. J. Kim, J. Byun, T. Jeon, H. M. Jin, H. R. Hong, and S. O. Kim, Perovskite Light-Emitting Diodes via Laser Crystallization: Systematic Investigation on Grain Size Effects for Device Performance. ACS Appl. Mater. Interfaces 2018, 10, 2490−2495
[17]陳廷豪, 無機鹵素鈣鈦礦/雌性金屬薄膜-雙層異質結構之形貌、磁性及熱穩定性分析. 國立臺灣師範大學, 物理研究所, 一百一十年