研究生: |
蕭博允 Hsiao, Po-Yun |
---|---|
論文名稱: |
單次不同強度阻力運動對於年輕健康男性微血管功能之影響 The Acute Effect of Resistance Exercise on Microvascular Function in Young Men |
指導教授: |
劉宏文
Liu, Hung-Wen |
口試委員: |
林信甫
Lin, Hsin-Fu 郭育瑄 Kuo, Yu-Hsuan 劉宏文 Liu, Hung-Wen |
口試日期: | 2022/01/20 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 心血管疾病 、血管功能 、血管內皮細胞 、阻力運動 |
英文關鍵詞: | cardiovascular disease, vascular function, vascular endothelium, resistance exercise |
研究方法: | 實驗設計法 、 比較研究 、 觀察研究 |
DOI URL: | http://doi.org/10.6345/NTNU202201128 |
論文種類: | 學術論文 |
相關次數: | 點閱:167 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:隨著國內心血管疾病盛行率有年輕化的趨勢,除了飲食控制外規律運動也成為預防心血管疾病重要的手段。血管內皮為單層扁平細胞附著於血管內壁上,其功能為調節體內血流,先前研究發現動脈血管內皮細胞功能異常 (endothelial dysfunction) 為罹患心血管疾病的重要風險因子。已有文獻指出長期阻力訓練可以改善血管內皮細胞功能進而降低患病風險,然而現階段阻力運動對於血管功能的影響未有一致結果,尚待闡明。目的:探討健康年輕男性進行不同強度單次阻力運動血管功能以及組織耗氧量之差異。方法:本研究篩選健康年輕男性11名作為受試者,進行單次高與低強度阻力運動或靜坐,並分別抽取介入前後之血液樣本,以分析氮氧化物 (nitrate/nitrite, NOx), 內皮素-1 (endothelin-1, ET-1) 血管功能生化指標,同時利用近紅外線光譜儀血流阻斷測試 (near infrared spectroscopy-vascular occlusion test, NIRS-VOT) 測量微血管功能、肌肉組織含氧量指標。研究數據採用混合線性模型分析 (linear mixed model, LMM) 進行考驗,以驗證其差異性。結果:一、生理以及血液生化指標相關數值,高強度與低強度運動介入後立即以及 60 分血乳酸濃度顯著高於控制介入 (p < .05);低強度運動介入後立即 NOx 濃度變化量顯著高於控制介入 (p < .05);血壓數值以及ET-1濃度於不同介入下並無顯著差異 (p > .05)。二、組織含氧量相關數值,Baseline StO2變化量於高強度運動介入後立即顯著高於控制介入 (p <. 05);Minimum StO2以及slope 1 數值介入間無顯著差異 (p >.05)。三、血管功能相關指標數值,AUC以及slope 2 數值介入間無顯著差異 (p > .05)。相關性分析結果顯示AUC與slope 2數值呈顯著正相關,而Minimum StO2與slope 2、血乳酸濃度與slope 1數值呈顯著負相關。結論:一、年輕健康男性於不同強度阻力運動介入後,皆觀察到肌肉組織耗氧量Minimum StO2以及slope 1數值呈下降之趨勢,推測為肌肉組織進行乳酸代謝及磷酸肌酸系統回補有關。低強度阻力運動後,NOx濃度顯著上升,為肌肉反覆收縮使血流刺激內皮細胞增加NO分泌量所致。單次不同強度阻力運動後血壓無顯著上升,因此血管功能指標slope 2數值並未受損;AUC數值與長期運動微血管適應性較為相關,因此單次運動介入無法觀察到數值變化。二、現階段NIRS-VOT之檢測方法以及干擾因素,尚需更多運動相關研究,以釐清各數值所代表之生理意義。
Introduction: As there is growing trend of younger age group suffering cardiovascular event in Taiwan, regular exercise has become an important method to prevent cardiovascular disease (CVD) apart from diet control. The endothelial cells are a single-layer cell locating on the inner side of the vascular wall, which play a crucial role of regulating vascular blood flow. Previous articles showed that endothelial dysfunction could be a major indicator of CVD. Recent studies confirmed that regular resistance training could improve vascular function, and lower the risk of CVD. However, the acute effect of resistance exercise on endothelial function is inconclusive. Purpose: The present study investigates endothelial function and muscle oxygen saturation in healthy young men after a single session of resistance exercise at different intensities. Methods: Eleven healthy young men underwent three different conditions of assessment: (1) whole body resistance exercise at high intensity (4 sets of 8 repetitions at 85% of 8RM), (2) whole body resistance exercise at low intensity (4 sets of 15 repetitions at 45% of 8RM), (3) resting for the control condition. Vascular function and muscle oxygen saturation were assessed by NIRS-VOT before, immediately and 60 min after exercise. Blood pressure (BP), plasma concentrations of endothelin-1 (ET-1), nitrite and nitrate (NOx) and lactate were measured before, immediately and 60 min after exercise. Results: Lactate concentration was significantly higher immediately and 60 min after high and low intensity resistance exercise compared to control condition (p < .05). Changes in NOx levels were significantly higher immediately after low intensity resistance exercise (p < .05). Additionally, there was a significant increase in Baseline StO2 immediately after high intensity resistance exercise (p < .05). However, there was no significant difference for ET-1, BP, Minimum StO2, slope 2 and AUC among the experimental conditions. Conclusion: Our findings showed: (1) the downward trend of Minimum StO2 and slope 1 after two different resistance exercise intensities in healthy young men, could be caused by replenishment of phosphagen system and lactate metabolism. The significant increase of plasma NOx levels, released by endothelial cells was probably due to high frequency of muscle contraction during low intensity resistance exercise. In addition, there was no significant for slope 2 and AUC, which was mainly due to no change of BP value and the lack of vascular adaptation after a single session of resistance exercise. (2) NIRS-VOT, as an alternative technique assessing vascular function and muscle oxygen saturation, still has some issue and limitation needed further research to clarify.
衛生福利部國民健康署(2020)。2020慢性病盛行率。資料引自:https://www.hpa.gov.tw/641/1231/n
Alphonsus, C. S., & Rodseth, R. N. (2014). The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia, 69(7), 777-784. doi:10.1111/anae.12661
Anton, M. M., Cortez-Cooper, M. Y., DeVan, A. E., Neidre, D. B., Cook, J. N., & Tanaka, H. (2006). Resistance training increases basal limb blood flow and vascular conductance in aging humans. J Appl Physiol (1985), 101(5), 1351-1355. doi:10.1152/japplphysiol.00497.2006
Barrett, E. J., Wang, H., Upchurch, C. T., & Liu, Z. (2011). Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am J Physiol Endocrinol Metab, 301(2), E252-263. doi:10.1152/ajpendo.00186.2011
Beck, D. T., Casey, D. P., Martin, J. S., Emerson, B. D., & Braith, R. W. (2013). Exercise training improves endothelial function in young prehypertensives. Experimental Biology and Medicine, 238(4), 433-441. doi:10.1177/1535370213477600
Boeno, F. P., Farinha, J. B., Ramis, T. R., Macedo, R. C. O., Rodrigues-Krause, J., do Nascimento Queiroz, J., . . . Reischak-Oliveira, A. (2019). Effects of a Single Session of High- and Moderate-Intensity Resistance Exercise on Endothelial Function of Middle-Aged Sedentary Men. Frontiers in Physiology, 10, 777. doi:10.3389/fphys.2019.00777
Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813-820. doi:10.1038/414813a
Buchanan, C. E., Kadlec, A. O., Hoch, A. Z., Gutterman, D. D., & Durand, M. J. (2017). Hypertension during Weight Lifting Reduces Flow-Mediated Dilation in Nonathletes. Medicine & Science in Sports & Exercise, 49(4), 669-675. doi:10.1249/mss.0000000000001150
Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med, 29(3-4), 222-230. doi:10.1016/s0891-5849(00)00317-8
Cao, L., Li, X., Yan, P., Wang, X., Li, M., Li, R., . . . Yang, K. (2019). The effectiveness of aerobic exercise for hypertensive population: A systematic review and meta-analysis. The Journal of Clinical Hypertension, 21(7), 868-876. doi:10.1111/jch.13583
Crenshaw, A. G., Bronee, L., Krag, I., & Jensen, B. R. (2010). Oxygenation and EMG in the proximal and distal vastus lateralis during submaximal isometric knee extension. J Sports Sci, 28(10), 1057-1064. doi:10.1080/02640414.2010.489195
Dai, D. F., Rabinovitch, P. S., & Ungvari, Z. (2012). Mitochondria and cardiovascular aging. Circulation Research, 110(8), 1109-1124. doi:10.1161/circresaha.111.246140
Davenport, A. P., Hyndman, K. A., Dhaun, N., Southan, C., Kohan, D. E., Pollock, J. S., . . . Maguire, J. J. (2016). Endothelin. Pharmacological Reviews, 68(2), 357-418. doi:10.1124/pr.115.011833
Dawson, E. A., Green, D. J., Cable, N. T., & Thijssen, D. H. (2013). Effects of acute exercise on flow-mediated dilatation in healthy humans. Journal of Applied Physiology, 115(11), 1589-1598. doi:10.1152/japplphysiol.00450.2013
de Oliveira, G. V., Soares, R. N., Volino-Souza, M., Leitão, R., Murias, J. M., & Alvares, T. S. (2019). The effects of aging and cardiovascular risk factors on microvascular function assessed by near-infrared spectroscopy. Microvasc Res, 126, 103911. doi:10.1016/j.mvr.2019.103911
de Oliveira, G. V., Volino-Souza, M., Leitão, R., Pinheiro, V., Conte-Júnior, C. A., & Alvares, T. S. (2021). Suitability of the muscle O(2) resaturation parameters most used for assessing reactive hyperemia: a near-infrared spectroscopy study. J Vasc Bras, 20, e20200143. doi:10.1590/1677-5449.200143
Figueroa, A., Okamoto, T., Jaime, S. J., & Fahs, C. A. (2019). Impact of high- and low-intensity resistance training on arterial stiffness and blood pressure in adults across the lifespan: a review. European Journal of Physiology, 471(3), 467-478. doi:10.1007/s00424-018-2235-8
Flammer, A. J., Anderson, T., Celermajer, D. S., Creager, M. A., Deanfield, J., Ganz, P., . . . Lerman, A. (2012). The assessment of endothelial function: from research into clinical practice. Circulation, 126(6), 753-767. doi:10.1161/circulationaha.112.093245
Gayda, M., Juneau, M., Tardif, J. C., Harel, F., Levesque, S., & Nigam, A. (2015). Cardiometabolic and traditional cardiovascular risk factors and their potential impact on macrovascular and microvascular function: preliminary data. Clin Hemorheol Microcirc, 59(1), 53-65. doi:10.3233/ch-141816
Green, D. J., Bilsborough, W., Naylor, L. H., Reed, C., Wright, J., O'Driscoll, G., & Walsh, J. H. (2005). Comparison of forearm blood flow responses to incremental handgrip and cycle ergometer exercise: relative contribution of nitric oxide. J Physiol, 562(Pt 2), 617-628. doi:10.1113/jphysiol.2004.075929
Heffernan, K. S., Fahs, C. A., Iwamoto, G. A., Jae, S. Y., Wilund, K. R., Woods, J. A., & Fernhall, B. (2009). Resistance exercise training reduces central blood pressure and improves microvascular function in African American and white men. Atherosclerosis, 207(1), 220-226. doi:10.1016/j.atherosclerosis.2009.03.043
Higashi, Y., Kihara, Y., & Noma, K. (2012). Endothelial dysfunction and hypertension in aging. Hypertension Research, 35(11), 1039-1047. doi:10.1038/hr.2012.138
Hsieh, H. J., Liu, C. A., Huang, B., Tseng, A. H., & Wang, D. L. (2014). Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. Journal of Biomedical Science, 21(1), 3. doi:10.1186/1423-0127-21-3
Iannetta, D., Inglis, E. C., Soares, R. N., McLay, K. M., Pogliaghi, S., & Murias, J. M. (2019). Reliability of microvascular responsiveness measures derived from near-infrared spectroscopy across a variety of ischemic periods in young and older individuals. Microvasc Res, 122, 117-124. doi:10.1016/j.mvr.2018.10.001
Lerman, A., & Zeiher, A. M. (2005). Endothelial function: cardiac events. Circulation, 111(3), 363-368. doi:10.1161/01.Cir.0000153339.27064.14
Maeda, S., Miyauchi, T., Sakane, M., Saito, M., Maki, S., Goto, K., & Matsuda, M. (1997). Does endothelin-1 participate in the exercise-induced changes of blood flow distribution of muscles in humans? Journal of Applied Physiology, 82(4), 1107-1111. doi:10.1152/jappl.1997.82.4.1107
Mah, E., & Bruno, R. S. (2012). Postprandial hyperglycemia on vascular endothelial function: mechanisms and consequences. Nutrition Research, 32(10), 727-740. doi:10.1016/j.nutres.2012.08.002
Maruhashi, T., Kajikawa, M., Kishimoto, S., Hashimoto, H., Takaeko, Y., Yamaji, T., . . . Higashi, Y. (2020). Diagnostic Criteria of Flow-Mediated Vasodilation for Normal Endothelial Function and Nitroglycerin-Induced Vasodilation for Normal Vascular Smooth Muscle Function of the Brachial Artery. J Am Heart Assoc, 9(2), e013915. doi:10.1161/jaha.119.013915
Matsuzawa, Y., Kwon, T. G., Lennon, R. J., Lerman, L. O., & Lerman, A. (2015). Prognostic Value of Flow-Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta-Analysis. J Am Heart Assoc, 4(11). doi:10.1161/jaha.115.002270
Mattioni Maturana, F., Soares, R. N., Murias, J. M., Schellhorn, P., Erz, G., Burgstahler, C., . . . Nieß, A. M. (2021). Responders and non-responders to aerobic exercise training: beyond the evaluation of V˙O2max. Physiol Rep, 9(16), e14951. doi:10.14814/phy2.14951
Mills, K. T., Stefanescu, A., & He, J. (2020). The global epidemiology of hypertension. Nature Reviews Nephrology, 16(4), 223-237. doi:10.1038/s41581-019-0244-2
Morishima, T., Tsuchiya, Y., Iemitsu, M., & Ochi, E. (2018). High-intensity resistance exercise with low repetitions maintains endothelial function. The American Journal of Physiology-Heart and Circulatory Physiology, 315(3), H681-h686. doi:10.1152/ajpheart.00281.2018
Nagasawa, T. (2008). Resistance exercise increases postexercise oxygen consumption in nonexercising muscle. Eur J Appl Physiol, 104(6), 1053-1059. doi:10.1007/s00421-008-0862-z
Okamoto, T., Masuhara, M., & Ikuta, K. (2011). Effect of low-intensity resistance training on arterial function. European Journal of Applied Physiology, 111(5), 743-748. doi:10.1007/s00421-010-1702-5
Olson, T. P., Dengel, D. R., Leon, A. S., & Schmitz, K. H. (2006). Moderate resistance training and vascular health in overweight women. Medicine & Science in Sports & Exercise, 38(9), 1558-1564. doi:10.1249/01.mss.0000227540.58916.0e
Olver, T. D., Laughlin, M. H., & Padilla, J. (2019). Exercise and Vascular Insulin Sensitivity in the Skeletal Muscle and Brain. Exercise and Sport Sciences Reviews, 47(2), 66-74. doi:10.1249/jes.0000000000000182
Pedralli, M. L., Marschner, R. A., Kollet, D. P., Neto, S. G., Eibel, B., Tanaka, H., & Lehnen, A. M. (2020). Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: a randomized clinical trial Exercise, endothelium and blood pressure. Scientific Reports, 10(1), 7628. doi:10.1038/s41598-020-64365-x
Perticone, F., Ceravolo, R., Pujia, A., Ventura, G., Iacopino, S., Scozzafava, A., . . . Schillaci, G. (2001). Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation, 104(2), 191-196. doi:10.1161/01.cir.104.2.191
Phillips, S. A., Das, E., Wang, J., Pritchard, K., & Gutterman, D. D. (2011). Resistance and aerobic exercise protects against acute endothelial impairment induced by a single exposure to hypertension during exertion. Journal of Applied Physiology, 110(4), 1013-1020. doi:10.1152/japplphysiol.00438.2010
Robinson, S. L., Hattersley, J., Frost, G. S., Chambers, E. S., & Wallis, G. A. (2015). Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. J Appl Physiol (1985), 118(11), 1415-1422. doi:10.1152/japplphysiol.00058.2015
Rosenberry, R., Chung, S., & Nelson, M. D. (2018). Skeletal Muscle Neurovascular Coupling, Oxidative Capacity, and Microvascular Function with 'One Stop Shop' Near-infrared Spectroscopy. J Vis Exp(132). doi:10.3791/57317
Rosenberry, R., Munson, M., Chung, S., Samuel, T. J., Patik, J., Tucker, W. J., . . . Nelson, M. D. (2018). Age-related microvascular dysfunction: novel insight from near-infrared spectroscopy. Exp Physiol, 103(2), 190-200. doi:10.1113/ep086639
Schulz, E., Gori, T., & Münzel, T. (2011). Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res, 34(6), 665-673. doi:10.1038/hr.2011.39
Shimokawa, H., & Satoh, K. (2014). Vascular function. Arterioscler Thromb Vasc Biol, 34(11), 2359-2362. doi:10.1161/atvbaha.114.304119
Shimomura, K., Murase, N., Osada, T., Kime, R., Anjo, M., Esaki, K., . . . Katsumura, T. (2009). A study of passive weight-bearing lower limb exercise effects on local muscles and whole body oxidative metabolism: a comparison with simulated horse riding, bicycle, and walking exercise. Dyn Med, 8, 4. doi:10.1186/1476-5918-8-4
Siasos, G., Athanasiou, D., Terzis, G., Stasinaki, A., Oikonomou, E., Tsitkanou, S., . . . Tousoulis, D. (2016). Acute effects of different types of aerobic exercise on endothelial function and arterial stiffness. European Journal of Preventive Cardiology, 23(14), 1565-1572. doi:10.1177/2047487316647185
Soares, R. N., de Oliveira, G. V., Alvares, T. S., & Murias, J. M. (2020). The effects of the analysis strategy on the correlation between the NIRS reperfusion measures and the FMD response. Microvasc Res, 127, 103922. doi:10.1016/j.mvr.2019.103922
Soares, R. N., & Murias, J. M. (2018). Near-infrared spectroscopy assessment of microvasculature detects difference in lower limb vascular responsiveness in obese compared to lean individuals. Microvasc Res, 118, 31-35. doi:10.1016/j.mvr.2018.01.008
Soares, R. N., Reimer, R. A., Alenezi, Z., Doyle-Baker, P. K., & Murias, J. M. (2018). Near-infrared spectroscopy can detect differences in vascular responsiveness to a hyperglycaemic challenge in individuals with obesity compared to normal-weight individuals. Diab Vasc Dis Res, 15(1), 55-63. doi:10.1177/1479164117731481
Soares, R. N., Reimer, R. A., & Murias, J. M. (2017). Changes in vascular responsiveness during a hyperglycemia challenge measured by near-infrared spectroscopy vascular occlusion test. Microvasc Res, 111, 67-71. doi:10.1016/j.mvr.2017.01.003
Tan, Q., Wang, Y., Chen, T. L.-W., Wong, D. W.-C., Yan, F., Li, Z., & Zhang, M. (2020). Exercise-Induced Hemodynamic Changes in Muscle Tissue: Implication of Muscle Fatigue. Applied Sciences, 10(10), 3512.
Thomas, D. D., Liu, X., Kantrow, S. P., & Lancaster, J. R., Jr. (2001). The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci U S A, 98(1), 355-360. doi:10.1073/pnas.011379598
Thorin, E., & Webb, D. J. (2010). Endothelium-derived endothelin-1. Pflugers Arch, 459(6), 951-958. doi:10.1007/s00424-009-0763-y
Thornton, M. K., & Potteiger, J. A. (2002). Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc, 34(4), 715-722. doi:10.1097/00005768-200204000-00024
Tushuizen, M. E., Nieuwland, R., Scheffer, P. G., Sturk, A., Heine, R. J., & Diamant, M. (2006). Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative stress and cellular microparticles in healthy men. J Thromb Haemost, 4(5), 1003-1010. doi:10.1111/j.1538-7836.2006.01914.x
Wigmore, D. M., Damon, B. M., Pober, D. M., & Kent-Braun, J. A. (2004). MRI measures of perfusion-related changes in human skeletal muscle during progressive contractions. J Appl Physiol (1985), 97(6), 2385-2394. doi:10.1152/japplphysiol.01390.2003
Zhao, Y., Vanhoutte, P. M., & Leung, S. W. (2015). Vascular nitric oxide: Beyond eNOS. Journal of Pharmacological Sciences, 129(2), 83-94. doi:10.1016/j.jphs.2015.09.002