簡易檢索 / 詳目顯示

研究生: 許博庭
Xu, Bo-Ting
論文名稱: 多波長與圓極化窄頻紅外光熱輻射之設計
Design of multi-wavelength and circular polarization narrow-band infrared plasmonic-thermal emitters
指導教授: 蕭惠心
Hsiao, Hui-Hsin
口試委員: 蕭惠心
Hsiao, Hui-Hsin
林致廷
Lin, Chih-Ting
涂維珍
Tu, Wei-Chen
口試日期: 2021/03/25
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 窄頻紅外光熱輻射器侷域型表面電漿子多波長發射圓極化熱輻射
英文關鍵詞: Narrowband infrared photothermal radiator, localized surface plasmon, multi-wavelength emission, circular polarization thermal radiation
DOI URL: http://doi.org/10.6345/NTNU202100412
論文種類: 學術論文
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究工作於中紅外波段(4-10μm)的熱輻射元件,基於金屬/介電質/金屬三明治堆疊結構,探討不同的金屬線寬大小與介電質材料之折射率對於熱輻射波長的調控,成功實現多波長熱輻射發射器。此雙層三明治結構由不對稱十字形金屬結構結合二氧化矽與二氧化鈦兩種介電材料交錯堆疊所組成,首先經由模擬計算設計來金屬/介電質/金屬共振腔中的磁共振波長,此雙層不對稱十字形堆疊結構可激發多個侷域型表面電漿子共振,並在x和y偏振光入射下,具不同的共振模態與頻譜特徵;再藉由黃光製程製作出樣品,根據實驗結果成功量測到五個窄頻熱輻射發射峰,並由於侷域型表面電漿子共振的特性使得量射所得之熱輻射不具色散並展現其偏振相依性,可藉由偏振片來調控發射波長。此外,由於具左右旋圓極化熱輻射發射器有助於在分子化學鍵的旋性分析檢測,基於金屬/介電質/金屬堆疊結構設計,本文從模擬計算深入探討上層矩形金屬天線在不同厚度的介電質層下,天線結構參數對應的相位變化,並優化出兩組最佳效率具有圓極化之紅外熱輻射發射器。本論文研究之多波長與圓極化中紅外熱輻射發射器可作為光源整合至中紅外波段光學檢測系統中,提供檢測多波段紅外輻射信號、提升分子識別的準確性並可應用於特定旋性分子檢測。

    This dissertation researches on heat radiation elements in the mid-infrared band (4-10μm), based on the metal/dielectric/metal sandwich stack structure, and explores the different metal line widths and the refractive index of dielectric materials with respect to the wavelength of heat radiation. Controlled and successfully implemented a multi-wavelength thermal radiation emitter. This double-layer sandwich structure is composed of an asymmetric cross-shaped metal structure combined with two dielectric materials of silicon dioxide and titanium dioxide. The magnetic resonance wavelength in the metal/dielectric/metal resonant cavity is first designed through simulation calculations. The double-layer asymmetric cross-shaped stacked structure can excite multiple localized surface plasmon resonances, and have different resonance modes and spectral characteristics under the incidence of x and y polarized light; then samples are made by the yellow light process According to the experimental results, five narrow-band thermal radiation emission peaks have been successfully measured. Due to the characteristics of localized surface plasmon resonance, the thermal radiation obtained by the measurement has no dispersion and exhibits polarization dependence. Polarizers can be used To adjust the emission wavelength. In addition, because the left and right-handed circularly polarized thermal radiation transmitter is helpful in the analysis and detection of the spinality of molecular chemical bonds, based on the metal/dielectric/metal stack structure design, this article discusses the upper rectangular metal antenna in different thicknesses from simulation calculations. Under the dielectric layer of, the phase changes corresponding to the antenna structure parameters, and optimized two sets of infrared heat radiation emitters with the best efficiency and circular polarization. The multi-wavelength and circular polarization mid-infrared thermal radiation emitter studied in this paper can be used as a light source to be integrated into the mid-infrared optical detection system, providing detection of multi-band infrared radiation signals, improving the accuracy of molecular recognition and being applied to specific rotation Molecular detection.

    第一章 緒論 1 1-1 表面電漿子 2 1-2表面電漿子現象 3 1-3熱輻射發射器 5 1-3-1黑體輻射 5 1-3-2克希荷夫熱輻射定律 7 1-4超穎材料 9 1-5廣義的司乃爾定律 11 1-5-1 多共振超穎介面 11 1-5-2 間隙電漿共振超穎介面 12 1-5-3 Pancharatnam-Berry相位超穎介面 13 1-6 論文概述 13 第二章 數值計算原理與實驗架構 15 2-1表面電漿子的基本原理 15 2-1-1 電場模態 16 2-1-2 侷域表面電漿子 20 2-2有限元素法 22 2-3實驗儀器介紹 24 2-3-1電子槍真空蒸鍍系統 24 2-3-2黃光微影製程設備 27 2-4量測系統 29 2-4-1 反射頻譜量測 29 2-4-2 熱輻射頻譜量測 30 2-5實驗流程 32 2-5-1基板清潔 32 2-5-2底部金屬沉積 34 2-5-3介電質沉積 34 2-5-4黃光微影製程 34 2-5-5頂部金屬沉積 35 2-5-6去光阻過程 35 第三章 多波長熱輻射發射器 37 3-1 結構設計:介電層對於侷域表面電漿子的影響 37 3-2結構設計 39 3-3 實驗過程與討論 45 3-3-1材料的選擇 45 3-3-2多波長發射器反射頻譜 46 3-3-3多波長發射器發射頻譜 48 3-3-4黃光微影製程參數影響 49 3-4多波長發射器反射頻譜 50 3-5多波長發射器發射頻譜 52 3-6多波長發射器色散關係 54 3-7結論 55 第四章 熱輻射相位發射器 56 4-1熱輻射相位理論假設 56 4-2熱發射相位模擬設計 58 4-3週期為4微米時,改變結構之相位響應 59 4-3-1 週期為5微米時,改變結構之相位響應 61 4-4 模擬熱輻射熱相位探討 64 4-5 結論 69 第五章 結論 70 參考文獻 71

    [1] Irina T. Sorokina and Konstantin L. Vodopyanov, Solid-State Mid-Infrared Laser
    Sources (Topics in Applied Physics), Springer; 1 edition (2003).
    [2] Bujin Guo, Yi Wang, Yang Wang, Han Q. Le, Journal of Biomedical Optics 12, p. 024005 (2007).
    [3] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature
    (London) 391, 667 (1998).
    [4] H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys. Rev.
    B 58, 6779 (1998).
    [5] Economou, E. N. Surface plasmons in thin flms. Phys. Rev. 182, 539–554 (1969).
    [6] Burke, J. J., Stegeman, G. I. & Tamir, T. Surface-polariton-like waves guided by
    thin, lossy metal flms. Phys. Rev B 33, 5186–5201 (1986).
    [7] Nerkararyan, K. V. Superfocusing of a surface polariton in a wedge-like
    structure. Phys. Lett. A 237, 103–105 (1997).
    [8] Verhagen, E., Polman, A. & Kuipers, L. K. Nanofocusing in laterally tapered
    plasmonic waveguides. Opt. Express 16, 45–57 (2008).
    [9] Jens Dorfmüller, et al. Fabry-Pérot Resonances in One-Dimensional Plasmonic
    Nanostructures. Nano Letter Vol. 9, No. 6, 2372-2377 (2009).
    [10] F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, Resonances of individual metal nanowires in the infrared.Appl. Phys. Lett. 89, 253104 (2006).
    [11] Allione, M., Temnov, V. V., Fedutik, Y., Woggon, U. & Artemyev, M. V.
    Surface plasmon mediated interference phenomena in low-Q silver nanowire cavities. Nano Lett. 8, 31–35 (2008).
    [12] Miyazaki, H. T. & Kurokawa, Y. Controlled plasmon resonance in closed
    metal/insulator/metal nanocavities. Appl. Phys. Lett. 89, 211126 (2006).
    [13] Hayes, C. L. & Van Duyne, R. P. Plasmon-sampled surface-enhanced Raman
    excitation spectroscopy. J. Phys. Chem. B 107, 7426–7433 (2003).
    [14] Liao, H., Nehl, C. L. & Hafner, J. H. Biomedical applications of plasmon
    resonant metal nanoparticles. Nanomedicine 1, 201–208 (2006).
    [15] Haes, A. & Van Duyne, R. P. A unifed view of propagating and localized surface
    plasmon resonance biosensors. Anal. Bioanal. Chem. 379, 920–930 (2004).
    [16] Bozhevolnyi, S. I. in Nanophotonics with Surface Plasmons (eds Shalaev, V. M.
    & Kawata, S.) 1–34 (Elsevier, 2007).
    [17] Sincerbox, G. T. & Gordon II, J. C. Small fast large-aperture light modulator
    using attenuated total refection. Appl. Opt. 20, 1491–1494 (1981).
    [18] Solgaard, O., Ho., F., Tackara, J. I. & Bloom, D. M. High frequency attenuated
    total internal refection light modulator. Appl. Phys. Lett. 61, 2500–2502 (1992).
    [19] Matthew J. Dicken, Luke A. Sweatlock, Domenico Pacifici, Henri J. Lezec, Kaushik Bhattacharya, and Harry A. Atwater, Electrooptic modulation in thin flm barium titanate plasmonic interferometers. Nano Lett. 8, 4048–4052 (2008).
    [20] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, Appl.
    Phys. Lett. 77, 1569 (2000).
    [21] H. Raether, Surface plasmons on smooth surfaces (Springer, 1988)
    [22] R. W. Wood, "On a remarkable case of uneven distribution of light in a
    diffraction grating spectrum," Proceed ings of the Physical Society of London 18 ,269 (1902).
    [23] U. Fano, "The theory of anomalous diffraction gratings and of quasi stationary
    waves on metallic surfaces (Sommerfeld’s waves)," JOSA 31 , 213 222 (1941).
    [24] R. Ritchie, "Plasma losses by fast electr ons in thin films," Physical Review 106 ,
    874 (1957).
    [25] E. Stern and R. Ferrell, "Surface plasma oscillations of a degenerate electron gas," Physical Review 120, 130 (1960).
    [26] E. Kretschmann and H. Raether, "Notizen: radiative decay of non radiative
    surfa ce plasmons excited by light," Zeitschrift für Naturforschung A 23 ,
    2135 2136 (1968).
    [27] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the
    method of frustrated total reflection," Zeitschrift für Physik 216 , 398 410
    (1968).
    [28] Tzu-Hung Chuang, Ming-Wei Tsai, Yi-Tsung Chang, and Si-Chen Lee. "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter"Appl. Phys. Lett., 89,173128 (2006).
    [29] Savaş Taya, Aleksandr Kropachev, Ismail Emre Araci, Terje Skotheim, Robert A. Norwood, and N. Peyghambarian. "Plasmonic thermal IR emitters based on nanoamorphous carbon "Appl. Phys. Lett., 94,071113(2009).
    [30] H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda. "Dual-band infrared metasurface thermal emitter for CO2 sensing"Appl. Phys. Lett. 105,121107(2014).
    [31] Takuya Inoue, Menaka De Zoysa, Takashi Asano, and Susumu Noda. Appl. "On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters" Phys. Lett. 108,091101(2016).
    [32] Zhiyu Wang, J. Kenji Clark, Li-Chung Huang, Ya-Lun Ho, and Jean-Jacques Delaunay. "Plasmonic nanochannel structure for narrow-band selective thermal emitter" Appl. Phys. Lett. 110,251102(2017).
    [33] Shao-Yu Huang, Hung-Hsin Chen, Hui-Hsin Hsiao, Pei-En Chang, Yi-Tsung Chang, Chun-Han Chen, Yu-Wei Jiang, Hung-Chun Chang, and Si-Chen Lee. "Triple Peaks Plasmonic Thermal Emitter With Selectable Wavelength Using Periodic Block Pattern as Top Layer"IEEE Photonics Technol. Lett. 24, 833–835 (2012).
    [34] Ming-Ru Tang , Hui-Hsin Hsiao, Chung-Hung Hong, Wei-Lun Huang, and Si-Chen Lee. "An Uncooled LWIR-Detector With LSPR Enhancement and Selective Narrow Absorption" IEEE Photonics Technol. Lett. 30, 1206–1209 (2018).
    [35] Katsuya Masuno, Takahiro Sawada, Shinya Kumagai, and Minoru Sasaki. "Multiwavelength Selective IR Emission Using Surface Plasmon Polaritons for Gas Sensing" IEEE Photon. Technol. Lett. 23, 1661 (2011).
    [36] Baoan Liu, Wei Gong, Bowen Yu, Pengfei Li, and Sheng Shen. "Perfect Thermal Emission by Nanoscale Transmission Line Resonators" Nano Lett., 17, 2, 666–672(2017).
    [37] Thang Duy Dao, Kai Chen, Satoshi Ishii, Akihiko Ohi, Toshihide Nabatame, Masahiro Kitajima, and Tadaaki Nagao. "Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers"ACS Photonics. 2, 964-970 (2015).
    [38] Alexander Lochbaum, Yuriy Fedoryshyn, Alexander Dorodnyy, Ueli Koch, Christian Hafner, and Juerg Leuthold. "On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing"ACS Photonics. 4, 1371-1380 (2017).
    [39] Jenq‐Shiuh Chou and Si‐Chen Lee. "Effect of porosity on infrared‐absorption spectra of silicon dioxide" J. Appl. Phys. 77, 1805 (1995).
    [40] Koray Aydin, Vivian E. Ferry, Ryan M. Briggs & Harry A. Atwater. "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers"Nature Communications 2, 517 (2011).
    [41] Jingjing Liu, Urcan Guler, Alexei Lagutchev, Alexander Kildishev, Oana Malis, Alexandra Boltasseva, and Vladimir M. Shalaev. "Quasi-coherent thermal emitter based on refractory plasmonic materials" Optical Materials Express 5,12,2721-2728(2015).
    [42] Emilie Sakat, Léo Wojszvzyk, Jean-Paul Hugonin, Mondher Besbes, Christophe Sauvan, and Jean-Jacques Greffet."Enhancing thermal radiation with nanoantennas to create infrared sources with high modulation rates" Optica 5,2,175-179(2018).
    [43] D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet. "Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission" PHYSICAL REVIEW APPLIED 4, 014023 (2015).
    [44] Rafik Smaali, Fatima Omeis, Emmanuel Centeno, Thierry Taliercio, F. Gonzalez-Posada, and L. Cerutti. "Giant Rabi splitting at the phonon line within all-semiconductor metallic-insulator-metallic antennas" PHYSICAL REVIEW B 100, 041302(R) (2019).
    [45] David L. C. Chan, Marin Soljačić, and J. D. Joannopoulos. "Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs" PHYSICAL REVIEW E 74, 016609 (2006).
    [46] Xianliang Liu, Talmage Tyler, Tatiana Starr, Anthony F. Starr, Nan Marie Jokerst, and Willie J. Padilla. "Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters" PHYSICAL REVIEW LETTERS 107,045901(2011).
    [47] B. J. Lee, Y.-B. Chen, and Z. M. Zhang. "Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy" Optics Letters 33, 204-206 (2008).
    [48] David L. C. Chan, Marin Soljaciˇ c and J. D. Joannopoulos. "Thermal emission and design in 2D-periodic metallic photonic crystal slabs" Optics Express Vol. 14, Issue 19, pp. 8785-8796 (2006).
    [49] X. Zhang, H. Liu, Z. G. Zhang, Q. Wang & S. N. Zhu. "Controlling thermal emission of phonon by magnetic metasurfaces" Scientific Reports volume 7, Article number: 41858 (2017).
    [50] Hung-Hsin Chen, Hui-Hsin Hsiao, Hung-Chun Chang, Wei-Lun Huang, and Si-Chen Lee. "Double wavelength infrared emission by localized surface plasmonic thermal emitter" APPLIED PHYSICS LETTERS 104, 083114 (2014).
    [51] Wei-Lun Huang, Hui-Hsin Hsiao, Ming-Ru Tang, and Si-Chen Lee. "Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement" APPLIED PHYSICS LETTERS 109, 063107 (2016)
    [52] Na Liu, Hui Liu, Shining Zhu & Harald Giessen. "Stereometamaterials" Nat. Photonics,vol. 3, pp. 157–162, 2009.
    [53] R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis. "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index" Phys. Rev. B, vol. 83, p. 035105, 2011.
    [54] J B Pendry, A J Holden, D J Robbins and W J Stewart. "Low frequency plasmons in thin-wire structures" Condensed Matter, vol. 10, pp. 4785–4809,1998.
    [55] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. "Composite Medium with Simultaneously Negative Permeability and Permittivity" Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000.
    [56] J. B. Pendry et al J.B. Pendry; A.J. Holden; D.J. Robbins; W.J. Stewart. "Magnetism from conductors and enhanced nonlinear phenomena" IEEE Trans. Microw. Theory Techn.,vol. 47, pp. 2075–2084, 1999.
    [57] Nanfang Yu, Patrice Genevet, Mikhail A. Kats, Francesco Aieta, Jean-Philippe Tetienne, Federico Capasso, Zeno Gaburro. "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction" Science 334, 333–337 (2011).
    [58] Shulin Sun, Kuang-Yu Yang, Chih-Ming Wang, Ta-Ko Juan, Wei Ting Chen, Chun Yen Liao, Qiong He, Shiyi Xiao, Wen-Ting Kung, Guang-Yu Guo, Lei Zhou, and Din Ping Tsai. "High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces" Nano Lett.12, 6223−6229(2012).
    [59] Lingling Huang, Xianzhong Chen, Holger Mühlenbernd, Guixin Li, Benfeng Bai, Qiaofeng Tan, Guofan Jin, Thomas Zentgraf, and Shuang Zhang. "Dispersionless Phase Discontinuities for Controlling Light Propagation" Nano Lett. 12, 5750–5755 (2012).
    [60] William L. Barnes, Alain Dereux & Thomas W. Ebbesen. "Surface plasmon subwavelength optics" Nature volume 424, pages824–830(2003).
    [61] E. D. Palik, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Burlington, 1997), pp. xviixviii.
    [62] Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu and S.-C. Lee. "Localized surface plasmon polaritons in Ag∕SiO2∕Ag plasmonic thermal emitter" Appl. Phys. Lett. 93 (3), 033113 (2008).
    [63] I. Puscasu and W. L. Schaich. "Narrow-band, tunable infrared emission from arrays of microstrip patches" Appl. Phys. Lett. 92 (23), 233102 (2008).

    無法下載圖示 電子全文延後公開
    2026/04/22
    QR CODE