簡易檢索 / 詳目顯示

研究生: 尹浚翰
Yin, Chun-Han
論文名稱: 鐵鈀合金在石墨烯上的表面形貌與磁性
Morphology and magnetism of FePd alloy on graphene
指導教授: 林文欽
Lin, Wen-Chin
口試委員: 洪振湧
Hong, Jhen-Yong
林文欽
Lin, Wen-Chin
駱芳鈺
Lo, Fang-Yuh
口試日期: 2021/06/29
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 石墨烯接觸模式鐵鈀合金磁阻
英文關鍵詞: Graphene, Contact mode, FePd alloy, Magnetoresistance
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202205205
論文種類: 學術論文
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來石墨烯由於其較長的自旋散射距離,成為自旋電子學中備受關注的二維材料之一,為了解決CVD製成的大範圍單層石墨烯,因電極與石墨烯間的接觸電阻,使得其傳輸自旋電子流的效果不佳,因此如何提高自旋電子注入效率成為主要研究目標。較佳的做法為使用磁性材料當作電極,磁化後並注入電流以提高自旋電子注入效率。本研究著重於了解鐵鈀合金在石墨烯上的磁性表現與表面形貌,作為往後工業應用上的基礎。
    本研究使用原子力顯微鏡的接觸模式,清理轉印過後石墨烯上的殘留顆粒,發現鐵鈀合金在清理過後的石墨烯上表面粗糙度僅有些微下降,而矯頑場上升約5 Oe。此外在分析不同厚度的鐵鈀合金在石墨烯上的表面形貌及磁性表現後,發現在厚度較低時鐵鈀合金的成長模式對於基板材料相當敏感,而當鐵鈀合金厚度為8 nm時表現趨於穩定。根據以上結果進一步製作元件以量測其磁阻,發現石墨烯對於鐵鈀合金的磁阻表現也有相當程度的影響,其磁阻變化率下降10倍。這些結果將有助於未來對於石墨烯和磁性材料異質結構的研究發展。

    Recently, graphene has been proposed for spintronic applications due to its long spin diffusion length. However, the contact resistance between single layer graphene produced via chemical vapor deposition(CVD) and electrodes leads to the poor efficiency of spin current transportation. Hence, increasing spin injection efficiency is garnered particular attention. Taking magnetized magnetic materials as electrodes then applying current through is a feasible scheme. In this study, magnetism and morphology of FePd alloy on graphene are researched to be the foundation of industry applications.
    In this study, atomic force microscopy(AFM) is used to clean up the residuals on transferred graphene. There are little decrease in roughness and 5 Oe increase in coercivity of FePd alloy on cleaned graphene. Furthermore, in the analysis of morphology and magnetism of different thickness FePd alloy, it is found the growth pattern of FePd alloy is sensitive to substrate and it tends to be stable while FePd alloy is 8 nm thick. Base on the above results, a magnetoresistance measurement is applied to FePd alloy on graphene. As a result, there is a 10 times decrease in magnetoresistance of it. These results are helpful for the research of graphene and magnetic materials heterostructures.

    第一章 緒論 1 第二章 基本原理 3 2-1石墨烯 3 2-2磁性性質 5 2-2-1磁性物質種類 5 2-2-2磁異向性 9 2-2-3磁阻 10 2-3氫化效應 12 2-4薄膜成長 13 第三章 實驗儀器 15 3-1原子力顯微鏡 15 3-2拉曼光譜繞射儀 20 3-3磁光柯爾效應顯微鏡 21 3-4掃描式電子顯微鏡 25 第四章 樣品製備 26 4-1石墨烯轉印 26 4-2鐵鈀合金鍍膜 29 第五章 實驗結果與討論 31 5-1使用原子力顯微鏡清理石墨烯表面 31 5-2鐵鈀合金成長形貌 34 5-2-1鐵鈀合金的 AFM量測 34 5-2-2鐵鈀合金的 SEM量測 43 5-3鐵鈀合金及 GdIG的磁性 45 5-3-1鐵鈀合金的磁性 45 5-3-2鐵鈀合金曝氫的磁性 55 5-3-3GdIG的磁性 59 5-4鐵鈀合金與石墨烯異質結構的電性與磁阻量測 60 5-4-1石墨烯及鐵鈀合金的電性 60 5-4-2鐵鈀合金與石墨烯異質結構的的磁阻 64 第六章 結論 66 6-1原子力顯微鏡清理石墨烯表面 66 6-2石墨烯影響鐵鈀合金的成長形貌 67 6-3石墨烯影響鐵鈀合金的磁性 68 6-4石墨烯影響鐵鈀合金的磁阻 68 6-5未來展望 69 參考資料 71

    [1]P. Seneor, B. Dlubak, M. -B. Martin, A. Anane, H. Jaffres and A. Fert, MRSBULLETIN, 2012, 12, VOLUME37, 1245-1254
    [2]M. Venkata, Christiaan Groenveld, André Dankert and Saroj P. Dash, NATURE COMMUNICATIONS, 2015, 6, 6766
    [3]M. Popinciuc, C. Jozsa, P.J. Zomer, N. Tombros, A. Veligura, H.T. Jonkman, B.J. van Wees, Phys. Rev. 80 ( 21 ), 214427 ( 2009 )
    [4]Lin W.-C., Wang B.-Y., Huang H.-Y., Tsai C.-J., Mudinepalli V.R., Journal of Alloys and Compounds, 661 , pp. 20-26 (2016).
    [5]Liao, L.J., Lin W.-C., Chang, P.G. Magnetic anisotropy rotated by hydrogenation in FePd alloy thin film. 2021
    [6]Jannik Meyer, KUNGL. VETENSKAPS-AKADEMIEN, 2009, 5, Science vol 324
    [7]Min Yi and Zhigang Shen, J. Mater. Chem. A, 2015, 3, 11700
    [8]Xuesong Li, Yanwu Zhu, Weiwei Cai, Mark Borysiak, Boyang Han, David Chen, Richard D. Piner, Luigi Colombo and Rodney S. Ruoff, NANO LETTERS, 2009, Vol. 9, No. 12, 4359-4363
    [9]Wei Han, Roland K. Kawakami, Martin Gmitra and Jaroslav Fabian, nature nanotechnology, 2014, 9, 794-807
    [10]B.D.Cullity(1972),Introduction to Magnetic Materials, Addison Wesley, New York
    [11]D. K. Cheng(1989)Field and Wave Electromagnetics, 3rd ed, Addison-Wesley, New York。
    [12]Kittel, Charles. Introduction to Solid State Physics 8th. New York: John Wiley & Sons. 2005. ISBN 978-0-471-41526-8.
    [13]Binasch, G. Grunberg, Saurenbach, Zinn. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B. 1989, 39 (7): 4828.
    [14]Baibich, M. N. Broto, Fert, Nguyen Van Dau, Petroff, Etienne, Creuzet, Friederich, Chazelas. Physical Review Letters. 1988, 61 (21): 2472–2475.
    [15]Manchester, F. D.; San-Martin, A.; Pitre, J. M. The H-Pd (hydrogen-palladium) System. Journal of Phase Equilibria. 1994, 15: 62.
    [16]Mott, N. F. and Jones, H. (1958) The Theory of Properties of metals and alloys. Oxford University Press.
    [17]N.J. J. Johnson1, B. Lam1, B. P. MacLeod1, R. S. Sherbo1, M. Moreno-Gonzalez1, D. K. Fork and C. P. Berlinguette, Nat. Mat. (2019)
    [18]Oura, K., V.G. Lifshits, A. A. Saranin, A. V. Zotov, M. Katayama. Surface Science: An Introduction. Berlin: Springer. 2003.
    [19]Stranski, I. N., Krastanov, L. Zur Theorie der orientierten Ausscheidung von lonenkristallen aufeinander. Sitzungsber. Akad. Wiss. Wien. Math.-Naturwiss. 1938, 146: 797-810
    [20]Gardiner, D. J. Practical Raman spectroscopy. Springer-Verlag. 1989.ISBN 978-0387502540.

    無法下載圖示 電子全文延後公開
    2027/10/20
    QR CODE