研究生: |
王金安 Chin-An Wang |
---|---|
論文名稱: |
以腕足動物化石殼體穩定碳氧同位素紀錄探究西澳洲二疊紀古環境 Permian Paleoenvironment inferred from Oxygen and Carbon Isotope Records of Brachiopod Shells from Canning Basin and Carnarvon Basin, Western Australia |
指導教授: |
米泓生
Mii, Horng-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 腕足動物 、穩定同位素 、澳洲 、二疊紀 |
英文關鍵詞: | brachiopod, stable isotope, Australia, Permian |
論文種類: | 學術論文 |
相關次數: | 點閱:155 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分析了112個採自西澳洲Carnarvon盆地與Canning盆地二疊紀腕足動物殼體,來重建二疊紀中緯度地區的古環境。殼體均沿著喙部至腹部切割製成薄片,並以岩石薄片顯微鏡觀察其微細構造的保存狀況,同時也觀察薄片在陰極射線的照射下是否有因成岩作用而產生的發光現象,檢查殼體保存狀況。本研究共有249筆數據取自保存良好,不發光(non-luminescent; NL)的部份可供古環境之重建。
保存良好之平均碳同位素分布在由老到輕的地層分別為Callytharra Fm. (CF:4.4±0.5‰, N=28),Jimba Jimba Calcarenite (JJM:4.5±0.8‰, N=4),Coyrie/Madeline Fm. (C&MF:4.7±0.8‰, N=10),Quinnanie Shale/Cundlego Fm. (Qsh:4.9±0.6‰, N=5),Wandagee Fm. (WF:4.2±0.7‰, N=9);Noonkanbah Fm. (NF:5.1±1.1‰, N=6),Lightjack Fm. (LF:5.4±0.2‰, N=2),Hardman Fm. (HF:4.8±0.3‰, N=3),與同時期低緯度的盤古東邊副熱帶地區烏拉爾山的數值較為接近,碳同位素趨勢相當,較不同於美國大陸的數值,低於東澳洲的數值,顯示盤古大陸東邊副熱帶地區與古特提斯海地區有著相似的海水循環條件。
氧同位素數值根據地層排列依序為Callytharra Fm. (-0.1±0.5‰, N=28),Jimba Jimba Calcarenite (-0.1±0.5, N=4),Coyrie/Madeline Fm. (-0.2±0.4‰, N=10),Quinnanie Shale/Cundlego Fm. (-0.1±0.4‰, N=5),Wandagee Fm. (-0.5±0.7‰, N=9);Noonkanbah Fm. (0.1±0.5‰, N=6),Lightjack Fm. (-0.6±0.9‰, N=2),Hardman Fm. (-0.0±0.3‰, N=3)。西澳洲腕足動物殼體的氧同位素數值均大於同時期低緯度及東澳洲的紀錄,顯示西澳洲於二疊紀時期的蒸發效應較為強烈。
To construct the middle paleolatitude environment in the Permian. One hundred and twelve brachiopod shells from two Western Australian basins (Carnarvon and Canning Basins) have been analyzed for oxygen and carbon isotopes to study. All samples were thin sectioned and examined under the petrographic and cathodoluminescence microscopes for evaluating shell preservation. A total of 249 isotopic analyses from well preserved portion (non-luminescent; NL) were found useful for inferring the paleoenvironment.
Average δ13C values of NL shells were 4.4 ± 0.5‰ (N = 28) for the Callytharra Formation (late Sakmarian-early Artinskian), 4.5 ± 0.8‰ (N = 4) for the Jimba Jimba Calcarenite (early Artinskian), 4.7± 0.8‰ (N = 10) for the Coyrie/Madeline Formations (both late Artinskian-early Kungurian), 4.9 ±0.6‰ (N =5) for the Quinnanie Shale and Cundlego Formation (both Kungurian), 4.2 ± 0.7‰ (N = 9) for the Wandagee Formation (late Kungurian), 5.1 ± 1.1‰ (N = 6) for the Noonkanbah Formation (Artinskian- Kungurian), 5.4 ± 0.2‰ (N =2) for the Lightjack Formation(Roadian-Capitanian), and 4.8± 0.3‰ (N = 3) for the Hardman Formation (Wuchiapingian). Within the uncertainty of the stratigraphical correlation, the carbon isotope values spanning Late Sakmarian to Kungurian are comparable to those of low latitude Urals.
Average δ18O values of NL shells were about 0‰ (-0.2 to 0.2‰) for Callytharra Formation(-0.1±0.5‰), Jimba Jimba Calcarenite(-0.1±0.5), Coyrie/Madeline Formations(-0.2±0.4‰), Quinnanie Shale and Cundlego Formation(-0.1±0.4‰), Noonkanbah Formation(0.1±0.5‰), and Hardman Formation(-0.0±0.3‰); and were -0.5 ± 0.7‰ and -0.6± 0.9‰ for Wandagee Formation and Lightjack Formation, respectively. These oxygen isotope values are overall greater than the coeval values reported for low latitude regions and for eastern Australia. These relatively more positive oxygen isotope values are here interpreted to indicate a possible high evaporation condition for the two studied basins in Western Australia during the Permian.
王鈺、金鈺玕、方大衛編,1966,腕足動物化石,科學出版社,共702頁。
Anderson, T. F., and Arthur, M. A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. Sl., eds, Stable isotopes in sedimentary geology: SEPM short Course, no. 10, p. 1-151.
Archbold, N.W., Shi, G.R., 1993, Aktastinian (Early Artinskian, Early Permian) 455 brachiopods from the Jimba Jimba Calcarenite, Carnarvon Basin, Western Australia. Proceedings of Royal Society of Victoria 105, 187-202.
Attendorn, H. G., and Bowen, R. N. C., 1997, Radioactive and Stable Isotope Geology: Chapman & Hall, London, 522p.
Brand, U., and Veizer, J., 1980, Chemical diagenesis of a multi-component carbonate system-1. Trace elements: Journal of Sedimentary Petrology 50, p. 1219-1236.
Brand, U., Logan, A., Hiller, N., and Richardson, J., 2003, Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography: Chemical Geology, v. 198, p. 305-334.
Carpenter, S. J., and Lohmann, K. C., 1995, δ18O and δ13C values of modern brachiopod shells: Geochimica et Cosmochimica Acta, v. 59, no. 18, p. 3749-3764.
Compston, W., 1960, The carbon isotopic composition of certain marine invertebrates and coals from the Australian Permian. Geochim. Cosmochim. Acta 18, 1-22.
Condon, M.A., 1965, The geology of the Carnarvon Basin, Western Australia. Part 1: Pre-Permian stratigraphy: Australia Bureau of Mineral Resources 77, 82p.
Craig, H., and Gordon, L. I., 1965, Isotopic oceanography; deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in Symposium on marine geochemistry, 1964. Occasional Pubblication Narragansett Marine Laboratory, University of Rhode Island, 277-234.
Crowell, J. C., 1978, Gondwanan glaciation, cyclothems, continental positioning, and climate change: American Journal of Science, v. 278, no. 10, p. 1345-1372.
Dixon, M and Haig, DW 2004, Foraminifera and their habitats within a cool-water carbonate succession following glaciation, Early Permian (Sakmarian), Western Australia: The Journal of Foraminiferal Research 34, p.308-324.
Epstein, S., and Mayeda, T., 1953, Variation of O18 content of water from natural sources: Geochimica et Cosmochimica Acta, v.4, p. 213-224.
Fielding, C, R., Frank, T. D., Birgenheier, L. P., Rygel, M. C., Jones, A. T., and Roberts, J., 2008, Stratigraphic imprint of the Late Paleozoic Ice Age in eastern Australia: a record of alternating glacial and nonglacial climate regime: Journal of the Geological Society, London, v.165, p. 129–140.
Fluteau, F., Besse, J., Broutin, J. & Ramstein, G., 2001. The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude? Palaeogeography, Palaeoclimatology, Palaeoecology 167, p. 39-71.
Frank, J. R., Carpenter, A. B., and Ogleshy, T.W., 1982, Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone (upper Cambrian), southeast Missouri: Journal of Sedimentary Petrology, v.52, p. 631-638.
Gibbs, M. T., McAllister, P., Kutzbach, J. E., Ziegler, A. M., Behling, P. J. & Rowley, D. B., 2002. Simulations of Permian Climate and Comparisons with Climate - Sensitive Sediments. Journal of Geology 110, p. 33-55.
Grossman, E. L., and Ku T-L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects: Chemical Geology. (Isotope Geosciences Section) v. 59, p. 59–74.
Grossman, E. L., Zhang C., and Yancey, T.E., 1991, Stable-isotope stratigraphy of brachiopods from Pennsylvanian shales in Texas: Geological Society of America Bulletin, v. 103, p. 953-965.
Grossman, E. L., Mii, H. S., and Yancey, T. E., 1993, Stable isotopes in Late Pennsylvanian brachiopods from the United States: Implications for Carboniferous paleoceanography: Geological Society of America Bulletin, v.105, p. 1284-1296.
Grossman, E. L., Yancey, T. E., Jones, T. E., Bruckschen, P., Chuvashov, B., Mazzullo, S. J., and Mii, H. S., 2008, Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, v.268, p. 222-233.
Guilderson, T. P., Fairbanks, R. G., and Rubenstone, J. L., 1994, Tropical temperature variations since 20,000 years ago; modulating interhemispheric climate change: Science, v. 263, no. 5147, p. 663-665.
Hays, P. D., and Grossman, E. L., 1991, Oxygen isotope in meteoric calcite cements as indicators of continental climate: Geology, v.19, p. 441-444.
Habermann, D., Neuser, R.D., and Richter, D.K., 1996, Ree-activated cathodoluminescence of calcite and dolomite:High Resolution Spectrometric analysis of CL emission (HRS-CL): Sediment.Geol., v. 101, p. 1-7.
Haig, D. W., 2003, Palaeobathymetric zonation of foraminifera from lower Permian shale deposits of a high-latitude southern interior sea. Marine Micropaleontology 49,p. 317-334.
Isbell, J.L., Miller, M.F., Wolfe, K.L. & Lenaker, P.A. 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems? In: Chan, M.A. & Archer, A.A. (eds) Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America, Special Papers, 370, p. 5–24.
Ivany, L.C., and Runnegar, B., 2010, Early Permian seasonality from bivalve δ18O and implications for the oxygen isotopic composition of seawater: Geology, v.38, p. 1027-1030.
Jones, A. T., Frank, T. D., Fielding, C. R., 2006, Cold climate in the eastern Australian mid to late Permian may reflect cold upwelling waters: Palaeogeography, Palaeoclimatology, Palaeoecology v.237, p. 370–377.
Kiehl, J.T., and Shields, C.A., 2005, Climate simulation of the latest Permian: Implications for mass extinction: Geology, v. 33, p. 757-760.
Korte, C., Jasper, T., Kozur, H. W., Veizer, J., 2005a, δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciations: Palaeogeography, Palaeoclimatology, Palaeoecology v.224, p. 333– 351.
Korte, C., Jones, P. J., Brand, U., Mertmann, D., Veizer, J., 2008, Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation: Palaeogeography, Palaeoclimatology, Palaeoecology v.269, p. 1–16.
Kutzbach, J.E., Ziegler, A.M., 1994, Simulation of Late Permian climate and biomes with an atmosphere-ocean model: Comparisons with observations, in Allen, J.R.L., Hoskins, B.J., Sellwood, B.W., Spicer, R.A., Valdes, P.J. (eds.), Palaeoclimates and their modeling: London, Chapman and Hall, p. 119–132.
Leonova, T.B., 1998, Permian ammonoids of Russia and Australia: Proceedings of the Royal Society of Victoria 110, p. 157-162.
Lever, H., 2004, Climate change and cyclic sedimentation in the Mid-Late Permian Kennedy Group, Carnarvon Basin, Western Australia. Gondwana Research 7, p. 135-142.
Lowenstam, H. A., 1961, Mineralogy, O18/O16 ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans: Journal of Geology, v. 69, no. 3, p. 241-260.
Meyers, W. J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico: Journal of Sedimentary Petrology, v. 44, p. 837-861.
Mii, H. S., Grossman, E. L., and Yancey, T. E., 1999, Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation: Geological Society of America Bulletin, v. 111, no. 7, p. 960-973.
Mii, H.S., Shi, G.R., Cheng, C.J., and Chen, Y.U., 2012, Permian Gondwanaland paleoenvironment inferred from carbon and oxygen isotope records of brachiopod fossils from Sydney Basin, southeast Australia: Chemical Geology, v. 291, p. 87-103.
Mory, A.J., Backhouse, J., 1997, Permian stratigraphy and palynology of the Carnarvon Basin, Western Australia: Geological Survey of Western Australia, Report 51, 46p.
Mory, A.J., Haig, D.W. (compilers) 2011, Permian–Carboniferous geology of the northern Perth and southern Carnarvon basins, Western Australia — a field guide: Geological Survey of Western Australia. Record 2011/14, 65p.
Mory, A.J., Hocking, R.M. (compilers) 2011, Permian, Carboniferous and Upper Devonian geology of the northern Canning basin, Western Australia — a field guide: Geological Survey of Western Australia. Record 2011/16, 36p.
Nicoll, R.S., Metcalfe, I., 1998, Early and Middle Permian conodonts from the Canning and Southern Carnarvon Basins, Western Australia: their implications for regional biogeography and palaeoclimatology: Proceedings of the Royal Society of Victoria 110, p. 419-461.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K., 1969, Oxygen isotope fractionation in divalent metal carbonates: The Journal of Chemical Physics, v. 51, no. 12, p. 5547-5558.
Pérez-Huerta, A., Cusack, M., Jeffries, T. E., Williams, C. T., 2008, High resolution distribution of magnesium and strontium and the evaluation of Mg/Ca thermometry in Recent brachiopod shells. Chemical Geology 247, p. 229-241.
Pierson, B. J., 1981, The control of cathodoluminescence in dolomite by iron and manganese: Sedimentology, v. 28, p. 601-610.
Playford, P.E, Cope, R.N., Low, G.H., Cockbain, A.E., Lowry, D.C., 1975, Canning Basin, in Geology of Western Australia: Geological Survey of Western Australia Memoir 2, p. 319-371.
Popp, B.N., Anderson, T.F., Sandberg, P.A., 1986, Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geol. Soc. Amer. Bull. 97, p. 1262–1269.
Savin, S. M., 1977, The history the Earth's surface temperature during the past 100 million year: Annual Review of Earth and Planetary Sciences, v.5, p. 319-355.
Schrag, D. P., Hampt, G., and Murray, D. W., 1996, Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean: Science, v. 272, no. 5270, p. 1930-1932.
Scotese, C. R., Boucot, A.J., and McKerrow, W. S., 1999, Gondwana palaeogeography and palaeoclimatology: Journal of African Earth Scince, v. 28, no. 1, p. 99-114.
Shackleton, N. J., and Opdyke, N., 1977, oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale: Quaternary Research, v.3, p. 39-55.
Spero, H.J., Mielke, K.M., Kalve, E.M., Lra, D.W., and Pak, D.K., 2003, Multisoecies approach to reconstructing eastern equatorial Pacific thermocline hydrography guring the past 360 kyr: Paleoceanography, v. 18, p. 1022.
Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and southeast United States: Geological Society of America Bulletin, v. 62, p. 399-416.
Veizer, J., Fritz, P., and Jones, B., 1986, Geochemistry of brachiopods, oxygen and carbon isotopic records of Paleozoic oceans: Geochimica et Cosmochimica Acta, v. 50, no. 8, p. 1679-1696.
Veevers, J. J., and Powell, M., 1987, Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica, Geological Society of America Bulletin, v. 98, no. 4, p. 475-487.
Williams, A., 1968, Evolution of the shell structure of articulate brachiopods: Palaeontological Association of London Special Papers in Paleontology, no. 2, 55p.
Zeng, J., Cao, C.Q., Davydov, V.I., Shen, S.Z., 2012. Carbon isotope chemostratigraphy and implications of palaeoclimatic changes during the Cisuralian (Early Permian) in the southern Urals, Russia. Gondwana Research 21, p. 601-610.
Ziegler, A.M., Hulver, M.L., Roeley, D.B., 1997. Permian world topography and climate, in Martini, I.P. (Ed.), Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous–Permian and Proterozoic. Oxford Univ. Press, New York, p. 111–146.