研究生: |
陳均達 Jyun-Da Chen |
---|---|
論文名稱: |
鈷鐵硼銅薄膜的磁光柯爾效應及鐵磁共振研究鈷鐵硼銅薄膜的磁光柯爾效應及鐵磁共振研究 Study of CoFeBCu thin films by means of MOKE and FMR |
指導教授: |
盧志權
Lo, Chi-Kuen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 鐵磁共振 、磁光柯爾效應 、鈷鐵硼 |
英文關鍵詞: | FMR, MOKE, CoFeB |
論文種類: | 學術論文 |
相關次數: | 點閱:220 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在二氧化矽(SiO2)的基板上,以磁控式共濺鍍(Co-Sputtering)成長20nm及30nm (Co40Fe40B20)1-xCux薄膜,其x分別是0、15、25、35及50。柯爾磁光效應(Magnetic Optical Kerr Effect, MOKE)對樣品做不同角度的量測可得知磁異向性;當參雜Cu比例增時CoFeBCu薄膜的表面磁異向性從二重對稱(2-fold symmetry) 過渡到各向同性。以原子力顯微鏡(Atomic Force Microscopy, AFM)量測樣品表貌,發現隨著參雜金屬Cu增加時,樣品從柱狀排列變均勻分布的顆粒排列,印証了磁異向性的變化。樣品的矯頑力(coercivity)也隨著金屬Cu成分增加而變小;從0.052(Oe)下降至約為0(Oe)。從鐵磁共振(Ferromagnetic Resonance, FMR)分析結果顯示樣品的磁異向性係數Ku(anisotropy constant),隨著參雜金屬Cu成分增加從7.33 (J/m3)下滑至3.33(J/m3),吉爾伯特阻尼係數α(Gilbert damping constant)則隨著Cu成分增加從0.05上升至0.18。
[1]J. M. D. COEY, Magnetism and Magnetic Materials.
[2]金重勳, 磁性技術手冊 (2002).
[3]C. Y. Hung, M. Mao, S. Funada, T. Schneider and L. Miloslavsky, Journal of Applied Physics, 87, 6618 (2000).
[4]S. U. Jen, Y. D. Yao, Y. T. Chen, J. M. Wu, C. C. Lee, T. L. Tsai, Y. C. Chang, Journal of Applied Physics, 99, 053701 (2006).
[5]D. Garcia, J. L. Munoz, G. Kurlyandskaya, and M. Vazquez, IEEE Transactions on Magnetic, 34, 4 (1998).
[6]Y. T. Chen, and S. M. Xie, Journal of Nanomaterials, 10 1155 (2012).
[7]D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink, IEEE Transactions on Magnetic, 40, 2269 (2004).
[8]W. G. Wang, J. Jordan-sweet, G. X. Miao, C. Ni, A. K. Rumaiz, L. R. Shah, X. Fan, P. Parsons, R. Stearrett, E. R. Nowak, J. S. Moodera, and J. Q. Xiao, Applied Physics Letters, 95, 242501 (2009)
[9]S. E. Russek, S. Kaka, and M. J. Donahue, Journal of Applied Physics, 87, 7070 (2000).
[10]R. H. Koch, J. G. Deak, D. W. Abraham, P. L. Troullioud, R. A. Altman, Y. Lu, W. J. Gallagher, R. E. Scheuerlein, K. P. Roche, and S. S. P. Parkin, Physics Review Letter, 81, 4512 (1998).
[11]S. Ingvarsson, G. Xiao, S. S. P. Parkin, and R. H. Koch, Applied Physics Letter, 85, 4995 (2004).
[12]S. Mizukmi, T. Kubota, X. Zhang, H. Naganuma, M. Oogane1, Y. Ando, and T. Miyazaki, Japan Journal Applied Physics, 50, 103003 (2011)
[13]Z. Q. Qiu, and S. D. Bader, Review of scientific instruments, 71, 1243 (2000).
[14]M. Farle, Reprts on Progress in Physics, 61, 755 (1988).
[15]M. Oogane, T. Wakitani, S. Yakata, R. Yilgin, Y. Ando, A. Sakuma, and T. Miyazaki, Japan Journal Applied Physics, 45, 3889 (2006).
[16]J. W. Kauffman, and J. S. Koehler, Physics Review, 97, 555 (1955).
[17]C. Chappert, K. Le Dang, P.Beauvillain, H. Hurdequint, D. Renard, Physics Review B, 34, 3192 (1986).
[18]W. Platow, W. Platow, A. N. Anisimov, G. L. Dunifer, M. Farle, and K. Baberschke, Physics Review B, 58, 5611 (1998).
[19]S. Mizukmi, Y. Ando, and T. Miyazaki, Japan Journal Applied Physics, 40, 580 (2001).
[20]C. K. Lo, W. C. Lai, and J. C. Cheng, Review of Scientific Instruments, 82, 086114 (2011).
[21]S. Ikeda, K. Miura, H. Yamamoto, K. Mizunma, H. D. Gan, M. Endo, S. Kannai, J. Hayakawa, F. Matsukura, and H. Ohno, Natural materials Letters, 10, 1038 (2010).