研究生: |
古書吉 Shu-Ji Gu |
---|---|
論文名稱: |
B-RAF激酶分子化合物之嵌合計算研究 Docking Computation of B-RAF Kinase-Ligand Complexes |
指導教授: |
孫英傑
Sun, Ying-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 分子 嵌合 、B-RAF |
英文關鍵詞: | Docking, B-RAF |
論文種類: | 學術論文 |
相關次數: | 點閱:136 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
EGFR(Epidermal Growth Factor receptors)路徑與調節細胞的生長、生殖與凋零的現象有很大相關性。B-RAF 位於EGFR路徑中,是目前癌症細胞中最常被突變的蛋白質激酶之一。在黑色素瘤、卵巢癌、甲狀腺癌與直腸癌都顯示有大量B-RAF 突變的現象。
本研究中,主要用分子嵌合計算來研究 B-RAF抑制劑。我們首先利用資料庫中B-RAF 結晶構型進行計算,並且與已知的實驗數據去比對其相關性,看是否能再現實驗結果。之後選擇出5個 B-RAF抑制劑複合物做交叉分子嵌合計算,並且去探討當加入蛋白質活性中心附近的胺基酸在可變動的情況下,對於再現不同抑制制時的影響。
在虛擬篩選的部份,首先用標準方法計算enrichment factor,將10個已知的活性分子與990個decoys 一起做嵌合計算,並且藉由胺基酸可變動的方式,探討是否能提高(影響) enrichment factor的結果,結果顯示在固定支鏈與部分動支鏈的結果差異並不明顯。
最後利用高速虛擬篩選,篩選ZINC資料庫中的其中400000個分子去搜尋出與B-RAF有最佳作用力的分子,並且列出最好的100個分子。希望這些計算的結果將有助於實驗學家在設計B-RAF的抑制劑上的設計與搜尋。
1. Verlinde, C. and W.G.J. Hol, STRUCTURE-BASED DRUG DESIGN - PROGRESS, RESULTS AND CHALLENGES. Structure, 1994. 2(7): p. 577-587.
2. Oshiro, C.M., I.D. Kuntz, and J.S. Dixon, FLEXIBLE LIGAND DOCKING USING A GENETIC ALGORITHM. Journal of Computer-Aided Molecular Design, 1995. 9(2): p. 113-130.
3. Li, F., et al., Modeling enzyme-phage peptide recognition - Docking method based on surface electrostatic complementary and solvation energy. Chemical Journal of Chinese Universities-Chinese, 2000. 21(11): p. 1703-1707.
4. Heritage, T.W., Virtual high-throughput screening - An application of partial match 3D searching. Abstracts of Papers of the American Chemical Society, 1998. 216: p. 056-CINF.
5. Brady, G.P. and P.F.W. Stouten, Virtual high-throughput screening using a genetic algorithm. Abstracts of Papers of the American Chemical Society, 1998. 216: p. 012-COMP.
6. Cavasotto, C.N. and R.A. Abagyan, Protein flexibility in ligand docking and virtual screening to protein kinases. Journal of Molecular Biology, 2004. 337(1): p. 209-225.
7. Carlson, H.A. and J.A. McCammon, Accommodating protein flexibility in computational drug design. Molecular Pharmacology, 2000. 57(2): p. 213-218.
8. Congreve, M., C.W. Murray, and T.L. Blundell, Keynote review: Structural biology and drug discovery. Drug Discovery Today, 2005. 10(13): p. 895-907.
9. Eccleston, A. and R. Dhand, Signalling in cancer. Nature, 2006. 441(7092): p. 423-423.
10. Zhang, J.M., P.L. Yang, and N.S. Gray, Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer, 2009. 9(1): p. 28-39.
11. Peyssonnaux, C. and A. Eychene, The Raf/MEK/ERK pathway: new concepts of activation. Biology of the Cell, 2001. 93(1-2): p. 53-62.
12. Seger, R. and E.G. Krebs, PROTEIN KINASES .7. THE MAPK SIGNALING CASCADE. Faseb Journal, 1995. 9(9): p. 726-735.
13. Campbell, S.L., et al., Increasing complexity of Ras signaling. Oncogene, 1998. 17(11): p. 1395-1413.
14. Sacks, D.B., The role of scaffold proteins in MEK/ERK signalling. Biochemical Society Transactions, 2006. 34: p. 833-836.
15. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-954.
16. Wan, P.T.C., et al., Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 2004. 116(6): p. 855-867.
17. Halaban, R., et al., PLX4032, a selective BRAFV600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAFWT melanoma cells. Pigment Cell & Melanoma Research, 2010. 23(2): p. 190-200.
18. King, A.J., et al., Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Research, 2006. 66(23): p. 11100-11105.
19. Shepherd, C., I. Puzanov, and J.A. Sosman, B-RAF Inhibitors: An Evolving Role in the Therapy of Malignant Melanoma. Current Oncology Reports, 2010. 12(3): p. 146-152.
20. Kufareva, I. and R. Abagyan, Type-II Kinase Inhibitor Docking, Screening, and Profiling Using Modified Structures of Active Kinase States. Journal of Medicinal Chemistry, 2008. 51(24): p. 7921-7932.
21. Liu, Y. and N.S. Gray, Rational design of inhibitors that bind to inactive kinase conformations. Nature Chemical Biology, 2006. 2(7): p. 358-364.
22. Ramurthy, S., et al., Design and Synthesis of Orally Bioavailable Benzimidazoles as Raf Kinase Inhibitors. Journal of Medicinal Chemistry, 2008. 51(22): p. 7049-7052.
23. Smith, A.L., et al., Selective Inhibitors of the Mutant B-Raf Pathway: Discovery of a Potent and Orally Bioavailable Aminoisoquinoline. Journal of Medicinal Chemistry, 2009. 52(20): p. 6189-6192.
24. Tsai, J., et al., Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(8): p. 3041-3046.
25. Hansen, J.D., et al., Potent and selective pyrazole-based inhibitors of B-Raf kinase. Bioorganic & Medicinal Chemistry Letters, 2008. 18(16): p. 4692-4695.
26. Buckmelter, A.J., et al., The Discovery of furo 2,3-c pyridine-based indanone oximes as potent and selective B-Raf inhibitors. Bioorganic & Medicinal Chemistry Letters, 2011. 21(4): p. 1248-1252.
27. Ren, L., et al., Non-oxime inhibitors of B-Raf(V600E) kinase. Bioorganic & Medicinal Chemistry Letters, 2011. 21(4): p. 1243-1247.
28. Xie, P., et al., The Crystal Structure of BRAF in Complex with an Organoruthenium Inhibitor Reveals a Mechanism for Inhibition of an Active Form of BRAF Kinase. Biochemistry, 2009. 48(23): p. 5187-5198.
29. Gould, A.E., et al., Design and Optimization of Potent and Orally Bioavailable Tetrahydronaphthalene Raf Inhibitors. Journal of Medicinal Chemistry, 2011. 54(6): p. 1836-1846.
30. Morris, G.M., et al., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 1998. 19(14): p. 1639-1662.
31. Makino, S. and I.D. Kuntz, Automated flexible ligand docking method and its application for database search. Journal of Computational Chemistry, 1997. 18(14): p. 1812-1825.
32. Rarey, M., et al., A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 1996. 261(3): p. 470-489.
33. Jones, G., et al., Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 1997. 267(3): p. 727-748.
34. Friesner, R.A., et al., Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 2004. 47(7): p. 1739-1749.
35. Mishra, N., et al., Structure based virtual screening of GSK-3 beta: Importance of protein flexibility and induced fit. Bioorganic & Medicinal Chemistry Letters, 2009. 19(19): p. 5582-5585.
36. Koska, J., et al., Fully Automated Molecular Mechanics Based Induced Fit Protein-Ligand Docking Method. Journal of Chemical Information and Modeling, 2008. 48(10): p. 1965-1973.
37. Davis, I.W. and D. Baker, ROSETTALIGAND Docking with Full Ligand and Receptor Flexibility. Journal of Molecular Biology, 2009. 385(2): p. 381-392.
38. Lovell, S.C., et al., The penultimate rotamer library. Proteins-Structure Function and Genetics, 2000. 40(3): p. 389-408.
39. Schlessinger, A. and B. Rost, Protein flexibility and rigidity predicted from sequence. Proteins-Structure Function and Bioinformatics, 2005. 61(1): p. 115-126.
40. Cole, J.C., et al., Comparing protein-ligand docking programs is difficult. Proteins-Structure Function and Bioinformatics, 2005. 60(3): p. 325-332.
41. Eldridge, M.D., et al., Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, 1997. 11(5): p. 425-445.
42. Baxter, C.A., et al., Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins-Structure Function and Genetics, 1998. 33(3): p. 367-382.
43. Fratev, F., et al., Molecular Basis of Inactive B-RAF(WT) and B-RAF(V600E) Ligand Inhibition, Selectivity and Conformational Stability: An in Silico Study. Molecular Pharmaceutics, 2009. 6(1): p. 144-157.
44. Najmanovich, R., et al., Side-chain flexibility in proteins upon ligand binding. Proteins-Structure Function and Genetics, 2000. 39(3): p. 261-268.
45. Irwin, J.J. and B.K. Shoichet, ZINC - A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 2005. 45(1): p. 177-182.
46. Lipinski, C.A., et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 1997. 23(1-3): p. 3-25.