簡易檢索 / 詳目顯示

研究生: 高裔峰
論文名稱: 應用於室內巡邏之自主式輪型機器人適應性動態控制器設計與實現
Design and Implementation of An Adaptive Dynamic Controller for An Autonomous Indoor Patrolling Wheeled Robot
指導教授: 王偉彥
Wang, Wei-Yen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 71
中文關鍵詞: 輪型機器人D* Lite演算法軌跡追蹤控制
英文關鍵詞: wheeled mobile robot, D* Lite algorithm, trajectory-tracking control
論文種類: 學術論文
相關次數: 點閱:198下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種混合式智慧型演算法以實現輪型機器人於已知室內環境的巡邏任務。首先,我們藉由D* Lite演算法決定輪型機器人從起點到終點的最佳路徑,再由所提出的混合式智慧型控制器使得輪型機器人可以有效地達成路徑追蹤的目的。此智慧型控制器可分成兩個部分,分別為運動學控制器以及TSK模糊控制器。在運動學控制器方面,利用倒階控制法設計的控制器可以保證輪型機器人的位置誤差與角度誤差將有效地趨近於零。此外,我們利用運動學控制器所得到的速度及角速度當作TSK模糊控制器的參考訊號。藉由TSK模糊控制器,輪型機器人的速度誤差與角速度誤差將會趨近於零。透過李普洛夫理論證明了此兩個控制器是漸近穩定。本研究先透過電腦模擬證實了該方案的有效性與可行性。最後,透過實驗驗證了該方法可以取得良好的效果。

    This thesis presents a hybrid intelligent algorithm to implement patrol tasks of a wheeled mobile robot (WMR) in a known indoor environment. First, we use D* Lite algorithm to determine the optimal path between the initial position and the destination. By using the proposed hybrid intelligent controller, we can efficiently accomplish the purpose of trajectory-tracking for a WMR. The intelligent controller is divided in two parts, which are kinematic controller and TSK fuzzy controller. The kinematic controller is designed by using a backstepping method. By using the kinematic controller, the position error and the angle error of the WMR efficiently converge to zero. Moreover, we use the linear and angular velocities obtained by the kinematic controller as the reference signals of the TSK fuzzy controller. Then the velocity error and the angular velocity error of the WMR converge to zero by using the TSK fuzzy controller. The asymptotic stability of kinematic and dynamic controllers is proven by Lyapunov theory. The effectiveness and the feasibility of the proposed scheme are verified by simulation results. Finally, experiments show that the proposed method can achieve good results.

    中文摘要 i 英文摘要 ii 誌  謝 iii 目  錄 iv 圖 目 錄 vi 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 3 1.4 論文架構 4 第二章  輪型機器人系統架構 6 2.1 輪型機器人硬體架構及規格 6 2.2 系統說明 7 2.3 通訊方式 8 2.4 電力與驅動系統 8 2.5 聲納感測系統 9 第三章  輪型機器人運動學控制器之設計 10 3.1 輪型機器人之運動學模型 10 3.2 運動學控制器 11 第四章  輪型機器人自適應模糊TSK控制器設計 14 4.1 輪型機器人之動態模型 14 4.2  TSK模糊模型 15 4.3  TSK模糊控制器設計 17 第五章  路徑規劃 23 5.1 實驗環境 23 5.2 D* Lite演算法 25 5.3 改良型D* Lite演算法 38 第六章  實驗與模擬結果 41 6.1 模擬結果 41 6.2 實驗結果 45 第七章  結論 64 參考文獻 65 自  傳 69

    [1] E. Prassler, A. Ritter, C. Schaeffer, and P. Fiorini, “A short history of cleaning robots,” Autonomous Robots, vol. 9, no. 3, pp. 211-226, 2000.
    [2] S. Patel, R. Sanyal, and T. Sobh, “RISCBOT: A WWW-enabled mobile surveillance and identification robot,” Journal of Intelligent and Robotic Systems, vol. 45, no. 1, pp. 15-30, 2006.
    [3] B. Stouten and A. J. Graaf, “Cooperative transportation of a large object development of an industrial application,” Proceedings of the ICRA‘04 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2450-2455, 2004.
    [4] D. A. Bell, J. Borenstein, S. P. Levine, Y. Korenl, and L. Jaros, “An assistive navigation system for wheelchairs based upon mobile robot obstacle avoidance,” IEEE Trans. on Robotics and Automation , pp. 2018-2022, 1994.
    [5] C. Alexopoulos and P. M. Griffin, “Path planning for a mobile robot,” IEEE Trans. on Systems, Man, Cybernetics, vol. 22, no. 2, 1992.
    [6] D. Ferguson and A. Stentz, “The delayed D* algorithm for efficient path replanning,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2045-2050, 2005.
    [7] G. E. Jan, K. Y. Chang, and I. Parberry, “Optimal path planning for mobile robot navigation,” IEEE/ASME Trans. on Mechatronics, vol. 13, no. 4, pp. 451-460, 2008.
    [8] E. Freire and R. Carelli, “Corridor navigation and wall-following stable control for sonar-based mobile robots,” Robotics and Autonomous Systems, vol. 45, pp. 235-247, 2003.
    [9] F. , J. Gomes, and W. Fetter, “Mobile robot trajectory tracking using model predictive control,” IEEE Latin-American Robotics Symposium, Luis, Brazil, 2005.
    [10] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics,” In Thirty-Fourth Conference on Decision and Control, pp. 3805-3810, New Orleans, USA, 1995.
    [11] C. C. De La Cruz and R. Carelli, “Dynamic modeling and centralized formation control of mobile robots,” In Thirty-Second Annual Conference of the IEEE Industrial Electronics Society, pp. 3880-3885, IECON, Paris, 2006.
    [12] C.-Y. Chen, T.-H. S. Li, Y.-C. Yeh, and C.-C. Chang, “Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots,” Mechatronics, vol. 19, pp. 156-166, 2009.
    [13] Y. Li, Z. Wang, and L. Zhu, “Adaptive neural network PID sliding mode dynamic control of nonholonomic mobile robot,” Proceedings of the 2010 IEEE International Conference on Information and Automation, pp. 753-757, 2010.
    [14] T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic based controller for wheeled mobile robots,” IEEE Trans. on Control Systems Technology, vol. 14, no. 3, pp. 501-510, 2006.
    [15] P. Antonini, G. Ippoliti, and S. Longhi, “Learning control of mobile robots using a multiprocessor system,” Control Engineering Practice, vol. 14, pp. 1279-1295, 2006.
    [16] G. Feng, S. G. Cao, N. W. Rees, and C. K. Chak, “Design of fuzzy control systems with guaranteed stability,” Fuzzy Sets Systems, vol. 85, pp. 1-10, 1997.
    [17] W.-Y. Wang, Y.-H. Chien, and I-H. Li, “Adaptive T-S fuzzy controller for a class of general nonlinear systems,” The 14th National Conference on Fuzzy Theory and its Applications, pp. A1-4-1 to A1-4-5 2006.
    [18] Y.-H. Chien, W.-Y. Wang, T.-T. Lee, “Design of Adaptive T-S Fuzzy-Neural Controller for a Class of Robot Manipulators Using Projection Update Laws,” IEEE International Conference on Systems, Man and Cybernetics, pp. 1255-1260, 2010.
    [19] W.-Y. Wang, M.-C. Chen, Y.-H. Chien, and T.-T. Lee, “On-Line Adaptive T-S Fuzzy Neural Control for Active Suspension Systems,” IEEE International Conference on Fuzzy Systems, pp.1297-1302, 2009.
    [20] W.-Y. Wang, Y.-H. Chien, Y.-G. Leu, Z.-H. Lee, and T.-T. Lee, “T-S Fuzzy-Neural Control for Robot Manipulators,” IEEE International Conference on Advanced Robotics and its Social Impacts, 2008.
    [21] Pioneer 3 Operations Manual, available:
    http://www.ist.tugraz.at/_attach/Publish/Kmr06/pioneer-robot.pdf
    [22] E.-H. Guechi et al., “Output feedback controller design of a unicycle-type mobile robot with delayed measurements,” Published in IET Control Theory and Applications, vol. 6, no. 5, pp. 726-733, 2012.
    [23] T. Fukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Trans. on Robotics and Automation, vol. 16, no. 5, pp. 609-615, 2000.
    [24] F. N. Martins et al., “An adaptive dynamic controller for autonomous mobile robot trajectory tracking,” Control Engineering Practice, vol. 16, pp. 1354-1363, 2008.
    [25] W.-Y. Wang, Y.-H. Chien, Y.-F. Kao, and I-H. Li, “Adaptive dynamic controller for path tracking of autonomous mobile robot,” 2012 CACS International Automatic Control Conference, 2012.
    [26] 陳丞昶,“結合 T-S 模糊模型與變結構控制技術於軌跡追蹤及可靠度控制之研究”,國立交通大學,碩士論文,中華民國九十七年七月。
    [27] Z. G. Hou et al., “Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach,” IEEE Trans. on Control Systems Technology, vol. 17, no. 4, pp. 803-815, July 2009.
    [28] M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall, 1993.
    [29] S. S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Englewood Cliffs, NJ: Prentice-Hall, 1989.
    [30] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, the MIT Press, 2004.
    [31] T. Kukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of nonholonomic mobile robot,” IEEE Trans. on Robot Automat, vol. 16, no. 5, pp. 609-615, 2000.
    [32] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control system,” Fuzzy Sets Systems, vol. 45, pp. 135-156, 1992.
    [33] 許禾,“時間延遲 T-S 模糊切換系統之穩定性分析及控制器設計”,南台科技大學,碩士論文,中華民國九十七年七月。
    [34] 陳智強,“結合 T-S 模糊模型與積分型順滑模控制技術之可靠度控制研究”, 國立交通大學,碩士論文,中華民國一百年七月。
    [35] 陳政立,“T-S 型模糊控制器倂以自適應調整法則應用於非線性系統的發展”, 國立台灣海洋大學,碩士論文,中華民國九十七年六月。
    [36] 朱建銘,“基於適應性模糊滑動模式控制器之輪型機器人循跡控制”, 國立臺北科技大學,碩士論文,中華民國一百年七月。
    [37] 林育正,“適應性區間第二類模糊滑動控制器應用於自走車路徑追蹤”, 國立臺灣師範大學,碩士論文,中華民國一百一年六月。
    [38] 王偉彥、簡宜興、練光祐、李祖添,“基於派屈模糊類神經網路之輪型行動機器人路徑追蹤控制”,模糊理論及其應用研討會,,2011。
    [39] 潘冠佑、蔡政沛、王偉彥、蔡超人,“模糊量測理論應用於機器人行走控制”,系統科學與工程會議,,2011。
    [40] 高裔峰、李宜勳、簡宜興、王偉彥,“輪型行動機器人之自適應性動態控制器的設計與實現”,系統科學與工程研討會。
    [41] Y.-H. Chien, W.-Y. Wang, I-H. Li, K.-Y. Lian, K.-Y. Kou, and T.-T. Lee, “Online Hybrid Intelligent Tracking Control for Uncertain Nonlinear Dynamical Systems,” Proceedings of the 2012 International Conference on Advanced Mechatronic Systems, pp. 621-625, 2012.
    [42] N.-H. Fang, I-H. Li, W.-Y. Wang, L.-W. Lee, and Y.-H. Chien, “Research and Design of Control System for a Tracked Robot with a Kinect Sensor,” 2012 International Conference on System Science and Engineering, pp. 217-222, 2012.
    [43] 吳建成、陶金旺、陶金旭、王偉彥、莊鎮嘉,“A Simplified Interval Type-2 Fuzzy Controller for The Truck Back Up System,”模糊理論及其應用研討會, pp. 11-15, 2009.
    [44] Yuming Liang, Lihong Xu, Ruihua Wei, and Haigen Hu, “Adaptive Fuzzy Control for Trajectory Tracking of Mobile Robot, ” IEEE International Conference on Intelligent Robots and Systems , pp. 4755-4760, 2010.

    下載圖示
    QR CODE