研究生: |
陳銘 Chen, Ming |
---|---|
論文名稱: |
探討臺灣河川輸砂傳輸特性的時空變異 Temporal and spatial variation of sediment transport regime among Taiwan rivers |
指導教授: |
李宗祐
Lee, Tsung-Yu |
口試委員: |
黃誌川
Huang, Jr-Chuan 莊昀叡 Chuang, Ray-Y 陳毅青 Chen, Yi-Chin 李宗祐 Lee, Tsung-Yu |
口試日期: | 2021/08/20 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 167 |
中文關鍵詞: | 率定曲線 、乘冪係數 、輸砂傳輸特性 、臺灣沉積物 |
英文關鍵詞: | rating curve, rating parameters, sediment transport regime, Taiwan’s sediment |
研究方法: | 次級資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202201201 |
論文種類: | 學術論文 |
相關次數: | 點閱:57 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
河中輸砂是了解流域地形演育的重要因子,而懸浮載(suspended load)的推估對於輸砂的估算至關重要。許多研究經常以乘冪函數(aQb)擬合河中懸浮載與流量之間的關係,並據此估計懸浮載的輸出量。本研究以全臺灣15條主要河流為對象,利用水利署於1948至2018年所觀測的懸浮載與流量數據,擬合得出乾季(11至5月)、溼季(6至10月)、一年和三年時間尺度的乘冪係數,藉以探討每條河流的乘冪係數隨時間變化的原因,並了解究竟是何種因素導致不同河流在輸砂傳輸特性(sediment transport regime)上之差異。結果發現近年來多數河川的乘冪係數有a值增加、b值減少的趨勢,臺灣輸砂行為於年內的時間分配上趨於不極端;西部河川的輸砂效率逐年降低、東部河川則逐年升高,推論受到地震空間分布影響;颱風對輸砂的影響時間集中且大量,而地震對輸砂的影響則較為長久。每條河流每季率定曲線的乘冪係數繪製於散佈圖中,會大致落於一條迴歸線上,每條迴歸線即描述該河長期平均之輸砂特性,不同時期乘冪係數與迴歸線的距離反應其短時期輸砂效率的變化,可作為瞭解不同流域間輸砂空間差異與單一流域輸砂時間變異的實用工具。
Fluvial sediment discharge, estimated by suspended sediment load, is a key to understanding the topographical evolution in river basins. The rating curve method, Qs=aQb, is applied to correlate observed suspended sediment load (Qs) with river discharge (Q) and estimate hourly Qs with input of hourly river discharge. The Q and Qs data from 15 rivers during 1948-2018 in Taiwan, measured by Water Resources Agency, are used to derive the rating parameters at different time scales, including dry period (November to May), wet period (June to October), one year and three years, attempting to understand their temporal and spatial variations and relationships between the variations and sediment transport regime. Results show that rating parameters in most of the rivers have been changing to bigger “a” and smaller “b”. The efficiency of sediment transport becomes lower in the western rivers while getting higher in the eastern, which is perhaps related to the spatial distribution of earthquakes. Compared to earthquakes, typhoons lead to a shorter but enormous influence on sediment transport. The rating parameters derived from seasonal rating curves of a river more or less follow a regression line describing the long-term sediment transport regime. The distance between rating parameters and the regression line changes with time, which reflects the change in the short-term sediment transport efficiency. It is found that the rating parameters can be a practical tool to understand the sediment transport in terms of spatial differences among rivers and the temporal variation in a single river.
中央氣象局科技中心. (1990). 民國78年北太平洋西部颱風總報告. 氣象學報, 36(4), 346-366.
林秀雯. (1996). 民國85年颱調查報告-賀伯颱風. 氣象學報, 42(1), 80-102.
姚慶鈞. (1983). 民國71年颱風調查報告-侵臺颱風安迪. 氣象學報, 29(2), 25-66.
徐辛欽. (2004). 民國93年颱風調查報告-第7號敏督利颱風(MINDULLE, 0407).
氣象局. (1983). 民國70年颱風調查報告-侵臺颱風葛萊拉. 氣象學報, 29(1), 25-32.
氣象局. (2020). 氣象百科 _ 颱風百問, 中央氣象局編 印. In.
陳怡良. (2009). 民國98年颱風調查報告-第8號莫拉克(Morakot)颱風(0908).
經濟部中央地質調查所. (2000). 九二一地震地質調查報告.
臺灣省氣象所. (1960). 颱風雪莉. 氣象學報, 6(4), 11-25.
劉復誠. (1983). 民國70年北太平洋西部颱風概述. 氣象學報, 29(2), 20-51.
鄧屬予. (2007). 臺灣第四紀大地構造. 經濟部中央地質調查所特刊第18號, 1-24.
羅雅尹. (2016). 民國104年颱風調查報告-第13號蘇迪勒(Soudelor)颱風(1513). 氣象學報, 53(1), 61-84.
Asselman, N. (2000). Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234(3-4), 228-248.
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., . . . Yoo, K. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53-60.
Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics: US government printing office.
Bao, H., Lee, T.-Y., Huang, J.-C., Feng, X., Dai, M., & Kao, S.-J. (2015). Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon. Scientific reports, 5(1), 1-10.
Chen, C.-W., Oguchi, T., Hayakawa, Y. S., Saito, H., Chen, H., Lin, G.-W., . . . Chao, Y.-C. (2018). Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan. Geomorphology, 303, 540-548.
Crawford, C. G. (1991). Estimation of suspended-sediment rating curves and mean suspended-sediment loads. Journal of Hydrology, 129(1-4), 331-348.
Dadson, S., Hovius, N., Pegg, S., Dade, W. B., Horng, M., & Chen, H. (2005). Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research: Earth Surface, 110(F4).
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., . . . Stark, C. P. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651.
Darby, S. E., Hackney, C. R., Leyland, J., Kummu, M., Lauri, H., Parsons, D. R., . . . Aalto, R. (2016). Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature, 539(7628), 276-279.
Einstein, H., Anderson, A. G., & Johnson, J. W. (1940). A distinction between bed‐load and suspended load in natural streams. Eos, Transactions American Geophysical Union, 21(2), 628-633.
Fan, X., Shi, C., Zhou, Y., & Shao, W. (2012). Sediment rating curves in the Ningxia-Inner Mongolia reaches of the upper Yellow River and their implications. Quaternary International, 282, 152-162.
Ferguson, R. (1986). River loads underestimated by rating curves. Water resources research, 22(1), 74-76.
Ferguson, R. (1987). Accuracy and precision of methods for estimating river loads. Earth surface processes and landforms, 12(1), 95-104.
Fu, K., He, D. M., & Lu, X. X. (2008). Sedimentation in the Manwan reservoir in the Upper Mekong and its downstream impacts. Quaternary International, 186(1), 91-99.
Garrels, R. M. (1983). The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 283, 641-683.
Gilmour, D., & Gilmour, D. (1971). The effects of logging on streamflow and sedimentation in a north Queensland rainforest catchment. The Commonwealth Forestry Review, 39-48.
Hayes, J. M., Strauss, H., & Kaufman, A. J. (1999). The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology, 161(1-3), 103-125.
Hoffmann, T. O., Baulig, Y., Fischer, H., & Blöthe, J. (2020). Scale breaks of suspended sediment rating in large rivers in Germany induced by organic matter. Earth Surface Dynamics, 8(3), 661-678.
Horowitz, A. J. (2003). An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrological processes, 17(17), 3387-3409.
Hung, C., Lin, G.-W., Kuo, H.-L., Zhang, J.-M., Chen, C.-W., & Chen, H. (2018). Impact of an extreme typhoon event on subsequent sediment discharges and rainfall-driven landslides in affected mountainous regions of taiwan. Geofluids, 2018.
Hwang, C. (1982). Suspended sediments of Taiwan rivers and their geomorphological significance. Bulletin of Nation Taiwan Normal University, 27, 649-677.
Kao, S.-J., Hilton, R., Selvaraj, K., Dai, M., Zehetner, F., Huang, J.-C., . . . Lee, T.-Y. (2014). Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surface Dynamics, 2(1), 127-139.
Kao, S.-J., Lee, T.-Y., & Milliman, J. D. (2005). Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 16(3), 653.
Kao, S., & Milliman, J. D. (2008). Water and sediment discharge from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities. The Journal of Geology, 116(5), 431-448.
Kao, S. J., & Liu, K. K. (2002). Exacerbation of erosion induced by human perturbation in a typical Oceania watershed: Insight from 45 years of hydrological records from the Lanyang‐Hsi River, northeastern Taiwan. Global Biogeochemical Cycles, 16(1), 16-11-16-17.
Lee, T.-Y., Huang, J.-C., Lee, J.-Y., Jien, S.-H., Zehetner, F., & Kao, S.-J. (2015). Magnified sediment export of small mountainous rivers in Taiwan: chain reactions from increased rainfall intensity under global warming. PloS one, 10(9), e0138283.
Li, Y.-H. (1976). Denudation of Taiwan island since the Pliocene epoch. Geology, 4(2), 105-107.
Lin, C.-W., Liu, S.-H., Lee, S.-Y., & Liu, C.-C. (2006). Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan. Engineering Geology, 86(2-3), 87-101.
Lin, C.-W., Shieh, C.-L., Yuan, B.-D., Shieh, Y.-C., Liu, S.-H., & Lee, S.-Y. (2004). Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology, 71(1-2), 49-61.
Lin, G.-W. (2018). Variations of Fluvial Sediment Transport after Large Earthquakes: Field Study in Taiwan Catchments. Water, 10(12), 1836.
Milliman, J. D., Farnsworth, K. L., & Albertin, C. S. (1999). Flux and fate of fluvial sediments leaving large islands in the East Indies. Journal of Sea Research, 41(1-2), 97-107.
Milliman, J. D., & Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. The Journal of Geology, 91(1), 1-21.
Morera, S. B., Condom, T., Crave, A., Steer, P., & Guyot, J. L. (2017). The impact of extreme El Niño events on modern sediment transport along the western Peruvian Andes (1968–2012). Scientific reports, 7(1), 1-14.
Mu, X., Zhang, X., Shao, H., Gao, P., Wang, F., Jiao, J., & Zhu, J. (2012). Dynamic changes of sediment discharge and the influencing factors in the Yellow River, China, for the recent 90 years. CLEAN–Soil, Air, Water, 40(3), 303-309.
Naden, P. S. (2010). The fine-sediment cascade. Sediment cascades: An integrated approach. John Wiley & Sons, Oxford, UK, 271-306.
Peters-Kümmerly, B. E. (1973). Untersuchungen über zusammensetzung und transport von schwebstoffen in einigen schweizer flüssen. Geographica Helvetica, 28(3), 137-151.
Searcy, J. K., & Hardison, C. H. (1960). Double-mass curves: US Government Printing Office.
Steer, P., Jeandet, L., Cubas, N., Marc, O., Meunier, P., Simoes, M., . . . Liang, W.-T. (2020). Earthquake statistics changed by typhoon-driven erosion. Scientific reports, 10(1), 1-11.
Sun, P., Wu, Y., Gao, J., Yao, Y., Zhao, F., Lei, X., & Qiu, L. (2020). Shifts of sediment transport regime caused by ecological restoration in the Middle Yellow River Basin. Science of the Total Environment, 698, 134261.
Syvitski, J. P., Morehead, M. D., Bahr, D. B., & Mulder, T. (2000). Estimating fluvial sediment transport: the rating parameters. Water resources research, 36(9), 2747-2760.
Syvitski, J. P., Peckham, S. D., Hilberman, R., & Mulder, T. (2003). Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sedimentary Geology, 162(1-2), 5-24.
Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J., & Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. science, 308(5720), 376-380.
Tsung, S.-C., Lai, J.-S., Chen, Y.-L., & Wang, H.-W. (2015). Rating Curve Modification at Low Discharges Using Physical Model Tests. World Journal of Engineering and Technology, 3(02), 50.
Walling, D. (1977). Assessing the accuracy of suspended sediment rating curves for a small basin. Water resources research, 13(3), 531-538.
Wang, H., Yang, Z., Saito, Y., Liu, J. P., Sun, X., & Wang, Y. (2007). Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Global and Planetary Change, 57(3-4), 331-354.
Wu, S.-J., Yang, J.-C., & Tung, Y.-K. (2011). Risk analysis for flood-control structure under consideration of uncertainties in design flood. Natural hazards, 58(1), 117-140.
Yang, G., Chen, Z., Yu, F., Wang, Z., Zhao, Y., & Wang, Z. (2007). Sediment rating parameters and their implications: Yangtze River, China. Geomorphology, 85(3-4), 166-175.