研究生: |
王思淮 Szu-Huai Wang |
---|---|
論文名稱: |
以回饋式自動模板生成為基礎 之 正規化關聯值棘波偵測系統 之設計及實現 Spike Detection Based on Normalized Correlation with Automatic Template Generation |
指導教授: |
黃文吉
Hwang, Wen-Jyi |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 棘波排序 、棘波偵測 、FPGA 、Normalized Correlator |
論文種類: | 學術論文 |
相關次數: | 點閱:336 下載:28 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了全新架構的回饋式棘波偵測演算法,主要是用來偵測一個未知棘波特色的棘波序列。此方法在初始階段使用了Block energy的棘波偵測法則,接著會把初始階段的結果輸出給Osort部份去進行分群並產生模板,最後再利用此模板來進行Matched filter的棘波偵測的動作。
在偵測的過程中,閥值的訂定一直是我們非常困擾的問題,所以我們嘗試了多種方式來制定出理想的閥值。一開始利用直接定義閥值的方式,給閥值一個訂值,但是此閥值無法適用於各種棘波序列。所以後來利用棘波序列的中間值來自動定義閥值,且在本系統的初始階段中使用它。 同時我們也透過了將棘波序列、模板正規化來簡化系統中閥值的訂定,並提供了一個制訂閥值的依據。
本論文還對棘波偵測系統進行加速的動作,使其不只在命中率上有更優異的表現,在產能上也能有所提升。最後也有將此棘波分類系統在FPGA上做實現
更進一步的提升其棘波偵測的效能。
1. S. Gibson, J. W. Judy, and D. Markovic, Spike sorting: the first step in decoding
the brain, IEEE Signal Processing Magazine, pp.124-143, 2012.
2. M.A. Lebedev and M.A.L. Nicolelis, Brainmachine interfaces: past, present and future, Trends in Neurosciences, Vol. 29, pp.536-546, 2006.
3. M.S., Lewicki, A review of methods for spike sorting: The detection and classification of neural action potentials. Netw. Comput. Neural Syst., Vol. 9, pp. R53R78, 1998.
4. S. Mukhopadhyay and G. C. Ray, A new interpretation of nonlinear energy operator and its efficacy in spike detection, IEEE Trans. Biomed. Eng., Vol. 45, pp. 180187, 1998.
5. I. Obeid and P. D. Wolf, Evaluation of Spike-Detection Algorithms for a
Brain-Machine Interface Application, IEEE Trans. Biomed. Eng., Vol. 51,
pp. 905-911, 2004.
6. S. Gibson, J. W. Judy, and D. Markovic, Technology-Aware Algorithm Design for
Neural Spike Detection, Feature Extraction, and Dimensionality Reduction, IEEE Trans. Neural Systems and Rehabilitation Engineering, Vol. 18, pp.469-478, 2010.
7. K. Oweiss and M. Aghagolzadeh, Detection and classification of extracellular
action potential recordings, Chapter 2 of Statistical Signal Processing for Neuroscience, pp.15-74, 2010.
8. K. Kim and S. Kim, A wavelet-based method for action potential detection from
extracellular neural signal recording with low signal-to-noise ratio, IEEE Trans. Biomed. Eng., Vol. 50, pp. 999-l011,2003.
9. R. J. Brychta, S. Tuntrakool, M. Appalsamy, N. R. Keller, D. Robertson, R. G.
Shiavi, Wavelet Methods for Spike Detection in Mouse Renal Sympathetic Nerve Activity, IEEE Trans. Biomed.Eng., Vol. 54, pp. 82-93, 2007.
10. R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, Unsupervised spike detection and
sorting with wavelets and superparamagnetic clustering, Neural Comp., Vol. 16, pp. 16611687, 2004.
11. N.Mtetwa, L. S. Smith, Smoothing and thresholding in neuronal spike detection,
Neurocomputing,Vol. 69, pp. 1366-1370, 2006.
12. T. Sato, T. Suzuki, and K. Mabuchi, Fast Template Matching for Spike Sorting,
Electronics and Communications in Japan, Vol. 92, pp.57-63, 2009.
13. S. Kim and J. McNames, Automatic spike detection based on adaptive template
matching for extracellular neural recordings, J. Neurosci. Methods, Vol.165, pp.165-174, 2007.
14. K.D. Harris, Accuracy of tetrode spike separation as determined by simultaneous
intracellular and extracellular measurements, J. Neurophysiol., Vol. 84, pp. 401-414, 2000.
15. A. Oliynyk, C. Bonifazzi1, F. Montani, L. Fadiga1, Automatic online spike
sorting with singular value decomposition and fuzzy C-mean clustering. BMC Neural Sci., Vol. 13, 2012,doi:10.1186/1471-2202-13-96.
16. W. J. Hwang, W. H. Lee, S. J. Lin and S. Y. Lai, Efficient Architecture for Spike
Sorting in Reconfigurable Hardware, Sensors, Vol. 13, pp.14860-14887, 2013.
17. I.T. Jolliffe, Principal Component Analysis, 2nd ed.; Springer: Berlin, Heidelberg,
Germany, 2002.
18. S. Miyamoto,H. Ichihashi, and K. Honda, Algorithms for Fuzzy Clustering,
Springer:Berlin/Heidelberg, Germany, 2010.
19. U. Rutishauser, Online detection and sorting of extracellularly recorded action
potentials in human medial temporal lobe recordings, in vivo, J. Neurosci. Methods, Vol.154, pp.204-224, 2006.
20. J. Wild, Z. Prekopcsak, T. Sieger, D. Novak, and R. Jech, Performance
comparison of extracellular spike sorting algorithms for single-channel recordings, J. Neurosci. Methods, Vol.203, pp.369-376,2012.
21. L.S. Smith and N. Mtetwa, A tool for synthesizing spike trains with realistic
interference. J. Neurosci. Methods Vol. 159, pp. 170-180, 2007.
22. H. Vicent Poor, An Introduction to Signal Detection and Estimation, Springer-Verlag, 1988
23. Kou-Hsuan Wu, Efficient VLSI Architecture for Spike Detection Based on Normalized Correlators,pp,10-17, 2013