研究生: |
江岱瑾 Chiang, Tai-Ching |
---|---|
論文名稱: |
鐵(III)鹵化物輔佐環型2-烯-3-炔-炔醯胺及鏈型1-炔-炔醯胺化合物的分子內環化反應 : 鹵化 -雙環[3.2.1]辛烯胺、-雙環[2.2.1]庚烯胺及-環丁烯胺衍生物的合成 Iron Halide-Promoted Intramolecular Cyclization Reactions of Cyclic 2-En-3-yn-ynamides and Acyclic 1-Yn-ynamides : Synthesis of Halogenated -Bicyclo[3.2.1]oct-6-en-6-amines,-Bicyclo[2.2.1]hept-2-en-2-amines, and -Cyclobutenamines |
指導教授: |
葉名倉
Yeh, Ming-Chang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 340 |
中文關鍵詞: | 鹵化鐵 、三氯化鐵 、三溴化鐵 、二氯化鐵 、雙環[3.2.1]辛烯胺 、雙環[2.2.1]庚烯胺 、雙環γ‒內醯胺 、環丁烯胺 |
英文關鍵詞: | bicyclo[3.2.1]oct-6-en-6-amines, bicyclo[2.2.1]hept-2-en-2-amines, cyclobutenamines, keteniminium ion, N-to-C allyl transfer |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.041.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:96 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文分為三個主題,以鹵化鐵輔佐環型2-烯-3-炔-炔醯胺及鏈型1-炔‒炔醯胺化合物的分子內環化反應,合成含鹵素的雙環[3.2.1]辛烯胺、雙環[2.2.1]庚烯胺及環丁烯胺的衍生物。
(一) 三氯化鐵輔佐環型2-烯-3-炔-炔醯胺化合物的分子內環化反應,此反應經由N-to-C allyl transfer,再經由aza-Prins-cyclization得到含氯的雙環[3.2.1]辛烯胺及雙環[2.2.1]庚烯胺衍生物。炔末端含4號位甲氧基苯的起始物會行二次合環得到雜三環化合物。此反應只需便宜易取得的三氯化鐵及只需一分鐘即可建構出橋型骨架的化合物。
(二) 三溴化鐵輔佐1-炔-炔醯胺化合物的分子內環化反應,此反應經由N-to-C allyl transfer,再經由aza-Prins-type cyclization得到高產率的環丁烯胺化合物。此合環反應時間短、起始物製備容易且使用便宜的三溴化鐵得到環丁烯胺化合物。
(三) 二氯化鐵輔佐六環8-苯基-2-烯-7-炔-炔醯胺化合物的分子內環化反應,此反應先得到中間體keteniminium ion後,氯離子加成在keteniminium ion的碳上,氯離子加成至鐵‒烯錯合物,還原除去最後經水解得到雙環γ‒內醯胺的合環產物。
Iron halide-assisted intramolecular cyclization reactions of cyclic 2-en-3-yn-ynamides and acyclic 1-yn-ynamides are described.
(1) Iron(III) chloride-promoted cyclization reactions of five- and six-membered ring 2-en-3-yn-ynamides provided chlorinated bicyclo[3.2.1]oct-6-en-6-amines and bicyclo[2.2.1]hept-2-en-2-amines. The reaction mechanism was suggested to proceed through an N-to-C allyl transfer followed by an aza-Prins-cyclization. This reaction requires only the cheap and readily available iron(III) chloride and short reaction times.
(2) Iron(III) bromide-promoted cyclization of acyclic 1-yn-ynamides. The reaction mechanism was suggested to undergo an N-to-C allyl transfer of the 1-yn-ynamides followed by an aza-Prins-type cyclization generating cyclobutenamines in high yields. Using readily available starting materials and the inexpensive iron(III) bromide to construct cyclobutenamines in short reaction time are advantages of the reaction.
(3) Iron(II) chloride-promoted cyclization of six-membered ring 8-phenyl-2-en-7-yn-ynamide. The reaction mechanism was proposed through a keteniminium ion intermediate followed by chlorination at the α-carbon of the keteniminium ion, chloride addition to the iron-olefin complex, reductive elimination and hydrolysis to generate a chlorine-containing bicyclic γ‒lactam.
1. Wang, F.-P.; Chen, Q.-H.; Liu, X.-Y. Nat. Prod. Rep. 2010, 27, 529.
2. Wangchuck, P.; Bremner, J. B.; Samosorn, S. J. Nat. Prod. 2007, 70, 1808.
3. Tang, T.-X.; Chen, Q.-F.; Liu, X.-Y.; Jian, X.-X.; Wang, F.-P. J. Asian Nat. Prod. Res. 2016, 18, 315.
4. Oh, W. K.; Lee, C. H.; Lee, M. S.; Bae, E. Y.; Sohn, C. B.; Oh, H.; Kim, B. Y.; Ahn, J. S. J. Ethnopharmacol. 2005, 96, 411.
5. Liu, J.; Jiang, L.-R.; Liu, M.-F. Chem. Nat. Compd. 2016, 52, 67.
6. Russel, R.; Paterson, M. Phytochemistry 2006, 67, 1985.
7. Dou, M.; Di, L.; Zhou, L.-L.; Yan, Y.-M.; Wang, X.-L.; Zhou, F.-J.; Yang, Z.-L.; Li, R.-T.; Hou, F.-F.; Cheng, Y.-X. Org. Lett. 2014, 16, 6064.
8. Kitajima, M.; Anbe, M.; Kogure, N.; Wongseripipatana, S.; Takayama, H. Tetrahedron Lett. 2014, 70, 9099.
9. Matsui, M.; Yamamura, Y.; Takebayashi, T.; Iwaki, K.; Takami, Y.; Kunitake, K.; Koga, F.; Urasaki, S.; Watanabe, Y. J. Nat. Prod. 1984, 47, 858.
10. Matsui, M.; Watanabe, Y. J. Nat. Prod. 1984, 47, 468.
11. Watanabe, Y.; Uchida, M. J. Nat. Prod. 1975, 14, 2695.
12. Calandra, N. A.; King, S. M.; Herzon, S. B. J. Org. Chem. 2013, 78, 10031.
13. Wang, M.; Wu, A.; Pan, X.; Yang, H. J. Org. Chem. 2002, 67, 5405.
14. Su, X.; Sun, Y.; Yao, J.; Chen, H.; Chen, C. Chem. Commun. 2016, 52, 4537.
15. Li, J.; Zhou, S.; Chen, P.; Dong, L.; Liu, T.; Chen, Y. Chem. Sci. 2012, 3, 1879.
16. Liu, G.; Shirley, M. E.; Van, K. N.; McFarlin, R. L.; Romo, D. Nat. Chem. 2013, 5, 1049.
17. Kim, S.; Cho, C. Tetrahedron Lett. 1994, 35, 8405.
18. Inagaki, S.; Imura, K.; Morita, T.; Yoshimi, Y.; Hatanaka, M.; Kawano, T. Chemistry Letters 2008, 37, 454.
19. Uma Maheswari, S.; Perumal, S. Tetrahedron Lett. 2013, 54, 7044.
20. Wang, G.; You, X.; Gan, Y.; Liu, Y. Org. Lett. 2017, 19, 110.
21. You, X.; Xie, X.; Wang, G.; Xiong, M.; Sun, R.; Chen, H.; Liu, Y. Chem. Eur. J. 2016, 22, 16765.
22. Shu, C.; Wang, Y.-H.; Shen, C.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254.
23. Yeh, M.-C.; Shiue, Y.-S.; Lin, H.-H.; Yu, T.-Y.; Hu, T.-C.; Hong, J.-J. Org. Lett. 2016, 18, 2407.
24. 林欣慧博士論文,國立臺灣師範大學化學所,2018年.
25. Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
26. Keith, J. M.; Gomez, L. J. Org. Chem. 2006, 71, 7113.
27. Kitahara, K.; Toma, T.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2008, 10, 2259.
28. Brückner, D. Tetrahedron Lett. 2006, 62, 3809.
29. López-Carrillo, V.; Echavarren, A. M. J. Am. Chem. Soc. 2010, 132, 9292.
30. Nishimura, A.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2012, 134, 15692.
31. Couty, S.; Meyer, C.; Cossy, J. Angew. Chem. Int. Ed. 2006, 45, 6726.
32. Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6, 1509.
33. Walker, P. R.; Campbell, C. D.; Suleman, A.; Carr, G.; Anderson, E. A. Angew. Chem. Int. Ed. 2013, 52, 9139.
34. Javaheripour, H.; Neckers, D. C. J. Org. Chem. 1977, 42, 1844.
35. Yuan, Y.; Bai, L.; Nan, J.; Liu, J.; Luan, X. Org. Lett. 2014, 16, 4316.
36. Yamaoka, Y.; Yoshida, T.; Shinozaki, M.; Yamada, K.; Takasu, K. J. Org. Chem. 2015, 80, 957.
37. Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Nature Communications 2017, 8, 1748.
38. Sabbasani, V. R.; Lee, H.; Xie, P.; Xia, Y.; Lee, D. Chem. Eur. J. 2017, 23, 8161.
39. 張依湄碩士論文,國立臺灣師範大學化學所,2017年.
40. Huang, P.; Chen, Z.; Yang, Q.; Peng, Y. Org. Lett. 2012, 14, 2790.
41. Wang, X.-N.; Winston-McPherson, G.-N.; Walton, M. C.; Zhang, Y.; Hsung, R. P.; DeKorver, K. A. J. Org. Chem. 2013, 78, 6233.
42. Carballo, R. M.; Ramírez, M. A.; Rodríguez, M. L.; Martin, V. S.; Padron, J. I. Org. Lett. 2006, 8, 3837.
43. Ghirardi, E.; Griera, R.; Picciche, M.; Molins, E.; Fernández, I.; Bosch, J.; Amat, M. Org. Lett. 2016, 18, 5836.
44. Carlson, E.; Tam, W. Org. Lett. 2016, 18, 2134.
45. Roy, T.; Brandt, P.; Wetzel, A.; Bergman, J.; Brånalt, J.; Sävmarker, J.; Larhed, M. Org. Lett. 2017, 19, 2738.
46. Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis; Burlington, MA 01803, USA: Elsevier Inc., 2005.
47. An, Q.; Shen, J.; Liu, D.; Liu, Y.; Zhang, W. Org. Lett. 2017, 19, 2925.
48. Zhong, C.-Z.; Tung, P.-T.; Chao, T.-H.; Yeh, M.-P. J. Org. Chem. 2017, 82, 481.
49. Liu, H.; Yang, Y.; Wang, S.; Wu, J.; Wang, X.-N.; Chang, J. Org. Lett. 2015, 17, 4472.
50. Yang, Y.; Liu, H.; Peng, C.; Wu, J.; Zhang, J.; Qiao, Y.; Wang, X.-N.; Chang, J. Org. Lett. 2016, 18, 5022.
51. Xu, W.; Wang, G.; Xie, X.; Liu, Y. Org. Lett. 2018, 20, 3273.
52. Ilies, L.; Arslanoglu, Y.; Matsubara, T.; Nakamura, E. Asian J. Org. Chem. 2018, in press.
53. Pérez, S. J.; Purino, M.; Miranda, P. O.; Martín, V. S.; Fernández, I.; Padron, J. I. Chem. Eur. J. 2015, 21, 15211.
54. Yeh, M.-C. P.; Pai, H.-F.; Hsiow, C.-Y.; Wang, Y.-R. Organometallics 2010, 29, 160.
55. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.