簡易檢索 / 詳目顯示

研究生: 蔡長誌
Tsai Chang Chih
論文名稱: Anchor 分子吸附於NiO(100)之表面: 利用理論計算方法之研究
Molecular Anchoring On NiO (100) Surface : A Computational Study
指導教授: 蔡明剛
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 錨基分子P型染料敏化太陽能電池氧化鎳(100)表面
英文關鍵詞: Anchor, P type dye sensitized solar cell, nickel oxide (100) surface
論文種類: 學術論文
相關次數: 點閱:200下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用週期性密度泛函理論,研究P-type染敏化太陽能染料電池半導體表面和染料anchor分子之間作用的關係。我們主要選擇了四種常見的anchor分子,分別是Carboxylate分子、Phosphonate分子、Carbodithioate分子以及Hydroxamate分子,作用在常見P-type半導體的NiO表面上。藉著週期性的運算,了解anchor分子在表面吸附的穩定性,尋找穩定的吸附結構。找到穩定的吸附結構之後,透過吸附前後電荷的差異,以判斷哪一種anchor分子可以有效的作為電荷傳遞的橋樑。接著我們使用投影態密度了解哪一類型的軌域是anchor分子和表面原子的主要鍵結。之後利用態密度分析,以判斷表面電子注入至anchor分子所需要的時間。利用以上詳細的方法,分析哪一種anchor分子和NiO有較好的作用。最後我們發現Phosphonate分子有較好的效果在NiO的表面上。計算出來的吸附能為-1.562 eV 雖然沒有Carbodithioate分子吸附能-2.527 eV表現來的好,但是在電荷轉移到NiO的部分,Phosphonate分子是損失最少的,並且在最穩定的吸附結構構型時,phosphonate分子的態密度重疊的比率最高,有達到22%,電子從NiO表面注入到anchor分子所需要的時間也僅有4.93 fs,種種的表現都足以證明phosphonate是可以取代傳統運用在染料分子的Carboxylate分子,並且phosphonate分子是適用在p-type染敏化太陽能染料電池的電極表面上。

    We used Density Functional Theory (DFT) to study the p-type Dye-Sensitized Solar Cell (DSSC). The semiconductor materials of the electrode surface as well as the anchor group dye paly important for the process electronic injection. We have chosen four anchor molecules commonly seen in the experiment and that included carboxylate, phosphonate, carbodithioate, and hydroxamate molecules chemically bonded with NiO (100) surface. The molecular anchoring was approximately simulated using periodic bound condition where the absorbent stability and the stable molecular structure were affected by the neighboring cells.
    After the stable geometries were located, the charge effect was analyzed and compared before and after the anchor adsorption in order to understand the charge transfer effect as well as the molecular orbital coupling along. Then we calculated the projected density of state (PDOS) to estimate the anchor surface coupling effect by numerically integrating the overlapped DOS of surface and anchor. The numerical value of coupling was furthur adapted in an empirical formula reported in the literature to estimate the time scale of electron injection. Finally, we predicted phosphonate molecule possessing the best performance with NiO surface. The adsorption energy of phosphonate was calculated to be -1.562 eV , and despite the strongest binding energy was found to be using carbodithioate at -2.527 eV the chargre transfer behavior from phosphonate to NiO surface has least loss. The coupling of phosphonate reached to 22% and the corresponding electron injected from the surface of the anchor molecule was predicted to be only 4.93 fs. Thus, the adaption of phosphonate anchor to p-type DSSC is recomanded.

    中文摘要 1 ABSTRACT 2 第一章 緒論 3 1-1 前言 3 1-2 染料敏化太陽能電池的介紹 6 1-3 染料敏化太陽能電池的結構、種類及工作原理 8 1-3-1 N-type和P-type染料敏化太陽能電池的差異: 8 1-3-2 N-type染料敏化太陽能電池介紹: 9 1-3-3 P-type染料敏化太陽能電池介紹 9 1-3-4 染料敏化太陽能電池的光電轉換效率公式介紹: 12 1-3-5 Tandem染料敏化太陽能電池 13 1-4 研究目標 15 第二章 計算原理 17 2-1 量子力學 17 2-2 計算化學的理論方法 18 2-3 密度泛函理論 19 2-4 Kohn-Sham 方法 21 2-5 局部密度近似法(Local density functional approximation,LDA) 23 2-6廣義梯度近似法(Generalized gradient approximation ,GGA) 26 2-7 空間的週期性(Preiodic boundary condition) 29 2-8 布洛赫理論 (Bloch Theorem) 30 2-9 虛擬位勢(Pseudopotential) 32 2-10 態密度分析(Density Of State) 36 2-11 計算參數的設置 37 第三章 實驗結果及討論 38 3-1 吸附結構及能量探討 38 3-1-1 Monodentate吸附結構分析 39 3-1-2 Bidentate 吸附結構分析 41 3-1-2-1 Phosphonate離子在有無立體效應氫原子立體效應之比較 45 3-1-3 吸附結構的分析 48 3-2表面的重組 51 3-3 Bader charge 的分析 53 3-4 表面原子和吸附物投影態密度的分析(PDOS Analyst) 55 3-4-1 Carboxylate的projected DOS分析 56 3-4-2-1 Phosphonate的projected DOS分析 57 3-4-2-2 Phosphonate 有無H原子之projected DOS分析 58 3-4-3 Carbodithioate的projected DOS分析 61 3-4-4 Hydroximate的projected DOS分析 62 3-5 基態時,電子之間交互作用及電子注入時間分析 66 3-5-1 Carboxylate 分子和表面電子交互作用及注入時間分析 66 3-5-2-1 Phosphonate分子和表面電子交互作用及注入時間分析在H原子的影響下 67 3-5-2-2 Phosphonate分子和表面電子交互作用及注入時間分析在無H原子的影響下 69 3-5-3 Carbodithioate分子和表面電子交互作用及注入時間分析 70 3-5-4 : Hydroxamate分子和表面電子交互作用及注入時間分析 71 第四章 結論 72 第五章 參考文獻 73

    1. Schaller, R.; Fan, Y.; Xu, S.; Fern, A.; Chaplen, F.; Liu, H.; Jiao, J., Fabrication of Nanomodified Anodes for Power Density Enhancement of Microbial Fuel Cells. MRS Online Proceedings Library 2009, 1170, null-null.
    2. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (version 41). Progress in Photovoltaics: Research and Applications 2013, 21 (1), 1-11.
    3. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334 (6056), 629-634.
    4. Oregan, B.; Gratzel, M., A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS. Nature 1991, 353 (6346), 737-740.
    5. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrybaker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M., CONVERSION OF LIGHT TO ELECTRICITY BY CIS-X2BIS(2,2'-BIPYRIDYL-4,4'-DICARBOXYLATE)RUTHENIUM(II) CHARGE-TRANSFER SENSITIZERS (X = CL-, BR-, I-, CN-, AND SCN-) ON NANOCRYSTALLINE TIO2 ELECTRODES. J. Am. Chem. Soc. 1993, 115 (14), 6382-6390.
    6. Robertson, N., Optimizing Dyes for Dye-Sensitized Solar Cells. Angewandte Chemie International Edition 2006, 45 (15), 2338-2345.
    7. Kroeze, J. E.; Hirata, N.; Koops, S.; Nazeeruddin, M. K.; Schmidt-Mende, L.; Gratzel, M.; Durrant, J. R., Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells. J. Am. Chem. Soc. 2006, 128 (50), 16376-16383.
    8. Clifford, J. N.; Martinez-Ferrero, E.; Viterisi, A.; Palomares, E., Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem. Soc. Rev. 2011, 40 (3), 1635-1646.
    9. Nattestad, A.; Mozer, A. J.; Fischer, M. K. R.; Cheng, Y. B.; Mishra, A.; Bauerle, P.; Bach, U., Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat Mater 2010, 9 (1), 31-35.
    10. Ardo, S.; Meyer, G. J., Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 2009, 38 (1), 115-164.
    11. Odobel, F.; Le Pleux, L. c.; Pellegrin, Y.; Blart, E., New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors: Challenges and Opportunities. Accounts of Chemical Research 2010, 43 (8), 1063-1071.
    12. Huang, Z.; Natu, G.; Ji, Z.; Hasin, P.; Wu, Y., p-Type Dye-Sensitized NiO Solar Cells: A Study by Electrochemical Impedance Spectroscopy. The Journal of Physical Chemistry C 2011, 115 (50), 25109-25114.
    13. Natu, G.; Hasin, P.; Huang, Z.; Ji, Z.; He, M.; Wu, Y., Valence Band-Edge Engineering of Nickel Oxide Nanoparticles via Cobalt Doping for Application in p-Type Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2012, 4 (11), 5922-5929.
    14. Natu, G.; Huang, Z.; Ji, Z.; Wu, Y., The Effect of an Atomically Deposited Layer of Alumina on NiO in P-type Dye-Sensitized Solar Cells. Langmuir 2011, 28 (1), 950-956.
    15. Yang, H.; Guai, G. H.; Guo, C.; Song, Q.; Jiang, S. P.; Wang, Y.; Zhang, W.; Li, C. M., NiO/Graphene Composite for Enhanced Charge Separation and Collection in p-Type Dye Sensitized Solar Cell. The Journal of Physical Chemistry C 2011, 115 (24), 12209-12215.
    16. Ji, Z.; Natu, G.; Huang, Z.; Kokhan, O.; Zhang, X.; Wu, Y., Synthesis, Photophysics, and Photovoltaic Studies of Ruthenium Cyclometalated Complexes as Sensitizers for p-Type NiO Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (32), 16854-16863.
    17. Gibson, E. A.; Smeigh, A. L.; Le Pleux, L. c.; Hammarström, L.; Odobel, F.; Boschloo, G.; Hagfeldt, A., Cobalt Polypyridyl-Based Electrolytes for p-Type Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2011, 115 (19), 9772-9779.
    18. Pellegrin, Y.; Le Pleux, L.; Blart, E.; Renaud, A.; Chavillon, B.; Szuwarski, N.; Boujtita, M.; Cario, L.; Jobic, S.; Jacquemin, D.; Odobel, F., Ruthenium polypyridine complexes as sensitizers in NiO based p-type dye-sensitized solar cells: Effects of the anchoring groups. J. Photochem. Photobiol. A-Chem. 2011, 219 (2-3), 235-242.
    19. Cramer, C. J., Essentials of Computational Chemistry: Theories and Models 22 November 2004.
    20. Levine, I. N., Quantum Chemistry ( 6th Edition). 2008.
    21. Lewars, E. G., Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. 2010 p664.
    22. Bernd Michael Rode , T. S. H., Michael D. Kugler The Basics of Theoretical and Computational Chemistry. 2007.
    23. Parr, R. G.; Yang, W., Density-Functional Theory of the Electronic Structure of Molecules. Annual Review of Physical Chemistry 1995, 46 (1), 701-728.
    24. (a) Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140 (4A), A1133-A1138; (b) Castro, A.; Marques, M. A. L.; Rubio, A., Propagators for the time-dependent Kohn--Sham equations. The Journal of Chemical Physics 2004, 121 (8), 3425-3433.
    25. Hartree, D. R., The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society 1928, 24 (01), 89-110.
    26. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136 (3B), B864-B871.
    27. Sousa, S. F.; Fernandes, P. A.; Ramos, M. J., General Performance of Density Functionals. The Journal of Physical Chemistry A 2007, 111 (42), 10439-10452.
    28. Ullrich, C. A.; Kohn, W., Kohn-Sham Theory for Ground-State Ensembles. Physical Review Letters 2001, 87 (9), 093001.
    29. Hellmann, H., A New Approximation Method in the Problem of Many Electrons
    Journal of Chemical Physics 1935, 3 (1).
    30. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996, 54 (16), 11169-11186.
    31. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6 (1), 15-50.
    32. Hammer, B.; Hansen, L. B.; Nørskov, J. K., Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B 1999, 59 (11), 7413-7421.
    33. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Physical Review B 1976, 13 (12), 5188-5192.
    34. Wang, B.; Nisar, J.; Ahuja, R., Molecular Simulation for Gas Adsorption at NiO (100) Surface. ACS Applied Materials & Interfaces 2012, 4 (10), 5691-5697.
    35. Newman, R.; Chrenko, R. M., Optical Properties of Nickel Oxide. Physical Review 1959, 114 (6), 1507-1513.
    36. Bader, R. F. W., Atoms in molecules. Accounts of Chemical Research 1985, 18 (1), 9-15.
    37. Mei, D., Density Functional Theory Study of Surface Carbonate Formation on BaO(001). The Journal of Physical Chemistry C 2010, 114 (4), 1867-1874.
    38. Anderson, P. W., Localized Magnetic States in Metals. Physical Review 1961, 124 (1), 41-53.
    39. Muscat, J. P.; Newns, D. M., Chemisorption on metals. Progress in Surface Science 1978, 9 (1), 1-43.
    40. Nilsing, M.; Persson, P.; Ojamäe, L., Anchor group influence on molecule–metal oxide interfaces: Periodic hybrid DFT study of pyridine bound to TiO2 via carboxylic and phosphonic acid. Chemical Physics Letters 2005, 415 (4–6), 375-380.
    41. Persson, P.; Lunell, S.; Ojamäe, L., Electronic interactions between aromatic adsorbates and metal oxide substrates calculated from first principles. Chemical Physics Letters 2002, 364 (5–6), 469-474.
    42. Ramakrishna, S.; Willig, F.; May, V., Photoinduced ultrafast electron injection from a surface attached molecule: Control of electronic and vibronic distributions via vibrational wave packets. Physical Review B 2000, 62 (24), R16330-R16333.

    下載圖示
    QR CODE