研究生: |
毛永祥 |
---|---|
論文名稱: |
氧化鋯支撐過渡金屬催化劑對乙醇蒸氣重組與氧化蒸氣重組反應的研究 |
指導教授: | 王禎翰 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 乙醇重組 、氧化蒸氣重組 、氫能 、蒸氣重組 |
英文關鍵詞: | ethanol reforming, oxidative steam reforming, hydrogen fuel, steam reforming |
論文種類: | 學術論文 |
相關次數: | 點閱:166 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是製備Co、Ni、Cu、Ru、Rh、Pd、Ag、Ir、Pd、Au支撐於ZrO2上的催化劑,於乙醇蒸氣重組反應(SR)與氧化乙醇蒸氣重組反應(OSR)時,系統地檢視與比較催化劑的反應趨勢以及機構。
首先,催化劑使用加入PVP(polyvinylpyrrolidone)做為分散劑的含浸法(impregnation)製備,能夠降低催化劑的粒子大小以及增加催化劑的表面積。乙醇重組的實驗包含SR與OSR反應,分別使用四種流量觀測─、N2 78、N2 8、air 100、air 10 sccm。反應溫度於600、550、500、450、400 oC以搭載TCD與FID的氣相層析儀(GC)分別偵測氣態以及液態的產物。對於單一催化劑而言,比較不同反應條件的結果可以發現,溫度越高以及通入越多的O2,能得到更多的H2產率以及乙醇轉換率。在同樣反應條件下比較不同催化劑之間的趨勢,可以發現Rh、Ru、Ir有最好的效能以及最佳的H2產率。這個結果也能與理論計算結論相符,理論計算主要是比較各個催化步驟的能障(barrier)。結果顯示:(1)Ru 、Rh、Ir為脫氫步驟(dehydrogenation);(2)Co、Ni、Pd、Pt為脫水步驟(dehydration);(3)Cu、Ag、Au為氧化步驟(oxidation)。對應到產物的趨勢分別為:(1)具有最高的H2產率與C1產物(CO、CO2、CH4)產率、(2)具有最多的C2H4、(3)具有最多的氧化產物(CH3CHO、C2H5COOH)。
The catalysts of Co、Ni、Cu、Ru、Rh、Pd、Ag、Ir、Pd, and Au supported on ZrO2 have been extensively studied for ethanol steam reforming (SR) and oxidative steam reforming (OSR). The experimental observation has also been systematically examined and compared to elucidate the trend of catalysts and reaction mechanism.
Initially, these catalysts have been prepared by the impregnation method with PVP (Polyvinylpyrrolidone) dispersant to reduce the particle size and increase the surface area of the catalysts. The reforming experiments, including SR and OSR, are operated in 4 different atmospheres, air 100, air 10, N2 78 and N2 8 sccm, and products are detected at 600, 550, 500, 450 and 400 oC by gas chromatography (GC) with TCD (for gas products) and FID (for liquid products) detectors. Comparing the reforming efficiency in different conditions on a single catalyst, a higher temperature and O2 gas flow results in a better H2 yield and ethanol conversion. Comparing different reformers under identical catalytic condition, the Rh, Ru and Ir show the best performance with the highest H2 yield despite their conversion efficiencies of ethanol are similar to other catalysts. The observation is also compared with previous calculations and we conclude three main reaction routes: dehydrogenation (Ru, Rh and Ir), dehydration (Co, Ni, Pd, Pt) and oxidation (Cu, Ag and Au), which lead to the highest yields of H2 (or C1 products of CO, CO2 and CH4), C2H4 and oxidative products (acetaldehyde and acetic acid), respectively.
1 R. M. Navarro, M. A. Pena, and J. L. G. Fierro*, Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chem. Rev. 107 (2007), 3952.
2 J.R. Salge, G.A. Deluga, L.D. Schmidt*, Catalytic partial oxidation of ethanol over noble metal catalysts. Journal of Catalysis 235 (2005), 69.
3 Agus Haryanto, † Sandun Fernando, *,† Naveen Murali,† and Sushil Adhikari†, Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy & Fuels 19 (2005), 2098.
4 Jian-Mei Li, Fei-Yang Huang, Wei-Zheng Weng*, Xiao-Qing Pei, Chun-Rong Luo, Hai-Qiang Lin, Chuan-Jing Huang, Hui-Lin Wan*, Effect of Rh loading on the performance of Rh/Al2O3 for methane partial oxidation to synthesis gas. Catalysis Today 131 (2008), 179.
5 S. Cavallaro b, V. Chiodo a , S. Freni a ,N. Mondello a , F. Frusteri a, *, Performance of Rh/Al2O3 catalyst in the steam freforming of ethanol: H2 production for MCFC. Applied Catalysis A: General 249 (2003), 119.
6 J.P. Breen, R. Burch*, H.M. Coleman, Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B: Environmental 39 (2002), 65.
7 Maria A. Goula, Sotiria K. Kontou, Panagiotis E. Tsiakaras*, Hydrogen production by ethanol steam reforming over a commercial Pd/r-Al2O3 catalyst. Applied Catalysis B: Environmental 49 (2004), 135.
8 Hongqing Chen1, Hao Yu1*, Yong Tang2, Minqiang Pan2, Guangxing Yang1, Feng Peng1*, Hongjuan Wang1, Jian Yang1, Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. Journal of Natural Gas Chemistry 18 (2009), 191.
9 Hua Song, Umit S. Ozkan*, Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility. Journal of Catalysis 261 (2009), 66.
10 F. Frusteria, *, S. Frenia, V. Chiodoa, S. Donatoa, G. Bonuraa, S. Cavallarob, Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. International Journal of Hydrogen Energy 31 (2006), 2193.
11 Min Hye Youn, Jeong Gil Seo, Sunyoung Park, Ji Chul Jung, Dong Ryul Park, In Kyu Song*, Hydrogen production by auto-thermal reforming of ethanol over nickel catalysts supported on ce-modified mesoporous zirconia: Effect of Ce/Zr molar ratio. International Journal of Hydregen Energy 33 (2008), 5052.
12 Min Hye Youn, Jeong Gil Seo, Sunyoung Park, Ji Chul Jung, Dong Ryul Park, In Kyu Song*, hydrogen production by auto-thermal reforming of ethanol over Ni catalysts supported on ZrO2: Effect of preparation method of ZrO2 support. International Journal of Hydregen Energy 33 (2008), 7457.
13 H. Wanga, b, Y.Liua,*, L. Wanga, Y.N. Qina, Study on the carbon deposition in steam reforming of ethanol over Co/CeO2 catalyst. Chemical Engineering Journal 145 (2008), 25.
14 Blekkan, Philippe Bichon ‧ Gro Haugom ‧ Hilde J. Venvik ‧ Anders Holmen Æ Edd A., Steam Reforming of Ethanol Over Supported Co and Ni Catalysts. Top Catal 49 (2008), 38.
15 Luca Barattinia, Gianguido Ramisa, Carlo Resinia,1, guido Buscaa,*, Michele Sisanib, Umberto Costantinob, Reaction path of ethanol and acetic acid steam reforming over Ni-Zn-Al catalysts. Flow reactor studies. Chemical Engineering Journal 153 (2009), 43.
16 Subramani Velua, 1, Kenzi Suzukia,2, Munusamy Vijayarajb, Sanmitra Barmanb, Chinnakonda S. Gopinathb,*, In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Applied Catalysis B: Environmental 55 (2005), 287.
17 F. Marinoa, M. Boveria, G. Baronettib, M. Labordea,*, Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/g-Al2O3 catalysts. Effect of Ni. International Journal of Hydregen Energy 26 (2001), 665; Fagen Wang, Yong Li, Weijie Cai, Ensheng Zhan, Xiaoling Mu, Wenjie Shen*, Ethanol steam reforming over Ni and Ni-Cu catalysts. Catalysis Today 146 (2009), 31; Maria Cruz Sanchez-Sanchez, *, ‡ Rufino M. Navarro Yerga,*,‡ Dimitris I. Kondarides,§ Xenophon E. Verykios,§ and Jose Luis G. Fierro‡, Mechanistic Aspects of the Ethanol Steam Reforming Reaction for Hydrogen Production on Pt, Ni, and PtNi Catalysts Supported on γ-Al2O3†. J. Phys. Chem. A 114 (2010), 3873.
18 Andreia Cristina Furtadoa, Christian Goncalves Alonsoa, Mauricio Pereira Cantaob, Nadia Regina Camargo Fernandes-Machadoa,*, Bimetallic catalysts performance during ethanol steam reforming: Influence of support materials. International Journal of Hydregen Energy 34 (2009), 7189; N. Laosiripojanaa, *, S. Assabumrungratb, Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst. Applied Catalysis B: Environmental 66 (2006), 29.
19 Jia-Lin Bia, b, Yeh-Yeau Honga,b, Chia-Chan Leea,b,Chuin-Tih Yehb, Chen-Bin Wanga,*, Novel zirconia-supported catalysts for low-temperature oxidative steam reforming of ethanol. Catalysis Today 129 (2007), 322.
20 Fabien Aupretre, Claude Descorme *, Daniel Duprez, Bio-ethanol catalytic steam reforming over supported metal catalysts. Catalysis Communications 3 (2002), 263.
21 M.C. Sánchez-Sánchez, R.M. Navarro*, J.L.G. Fierro, Ethanol steam reforming over Ni/MxOy–Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy 32 (2007), 1462
22 Xiaoying Liu, † Bingjun Xu, † Jan Haubrich,† Robert J. Madix,‡ and Cynthia M. Friend*,†,‡, Surface-Mediated Self-Coupling of Ethanol on Gold. J. AM. CHEM. SOC. 131 (2009), 5757.
23 Andreasen, A.; Lynggaard, H.; Stegelmann, C.; Stoltze, A microkinetic model of the methanol oxidation over silver P. Surf. Sci. 5 (2003), 544.
24 Senkan*, Shici Duan and Selim, Catalytic Conversion of Ethanol to Hydrogen Using Combinatorial Methods. Ind. Eng. Chem. Res. 44 (2005), 6381.
25 Dimitris K. Liguras, Dimitris I.Kondarides, Xenophon E. Verykios*, Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental 43 (2003), 345.
26 Min Hye Youn, Jeong Gil Seo, Kyung Min Cho, Ji Chul Jung, Heesoo Kim, Kyung Won La, Dong Ryul Park, Sunyoung Park, Sang Hee Lee and In Kyu Song†, Effect of support on hydrogen production by auto-thermal reforming of ethanol over supported nickel catalysts. Korean J. Chem. Eng 25 (2008), 236.
27 Ho*, Yu-Wei Chen and Jia-Jen, Dehydrogenation of Ethanol on a 2Ru/ZrO2(111) Surface: Density Functional Computations. J. Phys. Chem. C 113 (2009), 6132.
28 G. A. Deluga,1 J. R. Salge,1 L. D. Schmidt, 1* X. E. Verykios2, Renewable Hydrogen from Ethanol by Autothermal Reforming. Science 305 (2004), 993.