研究生: |
葉懷澤 Ye, Huai-Ze |
---|---|
論文名稱: |
轉錄對於大腸桿菌內多套數質體聚集行為的影響 The effects of transcription on the clustering behavior of the high-copy-number plasmids in Escherichia coli cells. |
指導教授: |
張宜仁
Chang, Yi-Ren |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 多套數質體 、轉錄抑制 |
英文關鍵詞: | high-copy-number plasmids, transcriptional repression |
DOI URL: | http://doi.org/10.6345/NTNU201900852 |
論文種類: | 學術論文 |
相關次數: | 點閱:134 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多套數的質體在大腸桿菌內並非隨機分佈於整個細胞,而在特定位置存在著 群集(聚類)。根據先前研究,其聚類原因可能來自轉錄造成。我們以單分子追蹤 與影像分析來觀察質體聚類行為,在單分子追蹤實驗,藉由螢光顏色區分,在質 體群集中限定一螢光標記質體為單一質體,並觀察單一質體的動態行為。我們使 用多套數質體 ColE1 的衍生質體 pBR322 做為實驗對象,並設計兩組具有相同複 製起點,但不同螢光抑制操作系統(Fluorescent repressor operator system)標記的質 體,並將兩種不同的質體植入到 BW25113。且使用抑制操作配對(PhlF-PphlF)作為 RNAII 的調控,以達到複製質體數量控管;另外,為了抑制轉錄行為,我們亦使 用了抑制操作配對(QacR-PqacR)作為抗藥性基因轉錄行為調控的手段。總而言之, 我們的研究表明多套數質體的確會受到轉錄行為抑制而導致聚類行為減弱甚至 消失。
Rather than randomly distributed, the high-copy-number (hcn) plasmids exhibit as clusters at specific cellular regions in Escherichia coli cells, and the transcription of their encoded genes has been considered as one of the main reason behind this phenomenon. To verify this hypothesis, the responses of the clustering behavior of hcn plasmids induced by various transcription strengths were investigated via the global distribution of the plasmids in cells and the single molecule tracking on single plasmids. To visualize the plasmids and to identify a single plasmid, two ColE1-derivative plasmids which were tagged by two different fluorescence colors via different Fluorescent repressor-operator system (FROS) and encode different genes of antibiotic resistance proteins were co-transformed into the Escherichia coli strain BW25113. A repressor-operator pair, PhlF-PphlF, was used to control the copy number of one of the plasmids by regulating the expression of the primer RNAII of the plasmid replication. Additionally, another repressor-operator pair, QacR-PqacR, was applied to regulate the transcription of the genes encoding the antibiotic resistance proteins, which is the main expression of the plasmids. As a result, the clustering behavior of the hcn plasmids became weak or disappeared, when the transcription of their encoded genes was inhibited.
Kado, C.I., Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Frontiers in microbiology, 2014. 5: p. 340.
Tolmasky, M. and J.C. Alonso, Plasmids: biology and impact in biotechnology and discovery. 2015: ASM Press.
Shi, J. and D.P. Biek, A versatile low-copy-number cloning vector derived from plasmid F. Gene, 1995. 164(1): p. 55-58.
Nordström, K., Plasmid R1—replication and its control. Plasmid, 2006. 55(1): p. 1-26.
Figurski, D.H., R.J. Meyer, and D.R. Helinski, Suppression of ColE1 replication properties by the Inc P-1 plasmid RK2 in hybrid plasmids constructed in vitro. Journal of molecular biology, 1979. 133(3): p. 295-318.
Bolivar, F., et al., Origin of replication of pBR345 plasmid DNA. Proceedings of the National Academy of Sciences, 1977. 74(12): p. 5265-5269.
Vieira, J. and J. Messing, The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene, 1982. 19(3): p. 259-268.
Coplin, D.L., Plasmids and their role in the evolution of plant pathogenic bacteria. Annual review of phytopathology, 1989. 27(1): p. 187-212.
Diaz Ricci, J.C. and M.E. Hernández, Plasmid effects on Escherichia coli metabolism. Critical reviews in biotechnology, 2000. 20(2): p. 79-108.
Silva, F., J.A. Queiroz, and F.C. Domingues, Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnology advances, 2012. 30(3): p. 691-708.
Novick, R.P., Plasmid incompatibility. Microbiological reviews, 1987. 51(4): p. 381.
Durkacz, B.W. and D.J. Sherratt, Segregation kinetics of colicinogenic factor col E1 from a bacterial population temperature sensitive for DNA polymerase I. Molecular and General Genetics MGG, 1973. 121(1): p. 71-75.
Nordström, K. and S.J. Austin, Mechanisms that contribute to the stable segregation of plasmids. Annual review of genetics, 1989. 23(1): p. 37-69.
Summers, D.K., The kinetics of plasmid loss. Trends in biotechnology, 1991. 9(1): p. 273-278.
Summers, D., Timing, self‐control and a sense of direction are the secrets of multicopy plasmid stability. Molecular microbiology, 1998. 29(5): p. 1137-1145.
Nordström, K. and K. Gerdes, Clustering versus random segregation of plasmids lacking a partitioning function: a plasmid paradox? Plasmid, 2003. 50(2): p. 95-101.
Summers, D.K. and D.J. Sherratt, Multimerization of high copy number plasmids causes instability: ColE 1 encodes a determinant essential for plasmid monomerization and stability. Cell, 1984. 36(4): p. 1097-1103.
Eliasson, Å., et al., Direct visualization of plasmid DNA in bacterial cells. Molecular microbiology, 1992. 6(2): p. 165-170.
Pogliano, J., et al., Multicopy plasmids are clustered and localized in Escherichia coli. Proceedings of the National Academy of Sciences, 2001. 98(8): p. 4486-4491.
Gordon, G.S. and A. Wright, DNA segregation in bacteria. Annual Reviews in Microbiology, 2000. 54(1): p. 681-708.
Gordon, G.S., et al., Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell, 1997. 90(6): p. 1113-1121.
Straight, A.F., et al., GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Current Biology, 1996. 6(12): p. 1599-1608.
Yao, S., D.R. Helinski, and A. Toukdarian, Localization of the naturally occurring plasmid ColE1 at the cell pole. Journal of bacteriology, 2007. 189(5): p. 1946-1953.
Wang, Y., P. Penkul, and J.N. Milstein, Quantitative localization microscopy reveals a novel organization of a high-copy number plasmid. Biophysical journal, 2016. 111(3): p. 467-479.
Reyes-Lamothe, R., et al., High-copy bacterial plasmids diffuse in the nucleoid-free space, replicate stochastically and are randomly partitioned at cell division. Nucleic acids research, 2013. 42(2): p. 1042-1051.
Wang, Y., Spatial distribution of high copy number plasmids in bacteria. Plasmid, 2017. 91: p. 2-8.
Hsu, T.-M. and Y.-R. Chang, High-Copy-Number Plasmid Segregation—Single-Molecule Dynamics in Single Cells. Biophysical journal, 2019. 116(5): p. 772-780.
Johnson, E.P., S. Yao, and D.R. Helinski, Gyrase inhibitors and thymine starvation disrupt the normal pattern of plasmid RK2 localization in Escherichia coli. Journal of bacteriology, 2005. 187(10): p. 3538-3547.
Yao, S., A. Toukdarian, and D.R. Helinski, Inhibition of protein and RNA synthesis in Escherichia coli results in declustering of plasmid RK2. Plasmid, 2006. 56(2): p. 124-132.
Zacharias, D.A., et al., Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science, 2002. 296(5569): p. 913-916.
Brenowitz, M., et al., DNA-binding properties of a lac repressor mutant incapable of forming tetramers. Journal of Biological Chemistry, 1991. 266(2): p. 1281-1288.
Stanton, B.C., et al., Genomic mining of prokaryotic repressors for orthogonal logic gates. Nature chemical biology, 2014. 10(2): p. 99.
Bolivar, F., et al., Construction and characterization of new cloning vehicle. II. A multipurpose cloning system. Gene, 1977. 2(2): p. 95-113.
Metzler, R., et al., Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Physical Chemistry Chemical Physics, 2014. 16(44): p. 24128-24164.
Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences, 2000. 97(12): p. 6640-6645.