簡易檢索 / 詳目顯示

研究生: 李易宗
論文名稱: 基於強化型Morlet轉換、解調變頻譜、多尺度熵、多頻帶頻譜熵與決策樹之齒輪箱異常診斷系統
A Gearbox Fault Diagnosis System Base on Enhanced Morlet Transform, Demodulation Spectrum, Multiscale Entropy, Multiband Spectrum Entropy and Decision Tree
指導教授: 吳順德
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 67
中文關鍵詞: 齒輪箱異常診斷系統決策樹
英文關鍵詞: gearbox, fault diagnosis system, decision tree
論文種類: 學術論文
相關次數: 點閱:350下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 產業應用上,齒輪箱扮演著重要的角色;典型的齒輪異常,包含了:磨損、輪尺斷裂、動不平衡、缺乏潤滑等,嚴重的甚至會發生齒輪本身崩壞的情形。當齒輪出現故障,振動訊號可能被激發出異常的振動特性;因此,可藉由對振動訊號的分析,利用不同的訊號處理方法,達成齒輪箱的異常診斷。本論文提出一齒輪箱異常診斷系統,用以辨識齒輪箱的異常狀態情形。首先,使用解調變頻譜、影像熵、多尺度熵和多頻帶頻譜熵抽取出異常狀態之特徵;接著,利用抽取出之特徵建立一決策樹模型。本論文所使用的齒輪箱實驗資料來源,是工業技術研究院機械與系統研究所智慧系統技術組監控系統技術部所建置之齒輪箱實驗平台,並由作者親自進行所有的實驗以收集本論文所需之實驗資料。實驗結果顯示,訓練出的決策樹模型,對於測試使用的資料之異常診斷,具有高度的準確性。

    Gearboxes play an important role in industrial applications. Typical faults of gears include pitting, chipping, imbalance, loss-of-lubrication and more seriously, crack. When a gear has a fault, the vibration signal may carry the signature of the fault in the gears. Therefore, fault detection of the gearbox is possible by analyzing the vibration signal by different signal processing algorithms. In this dissertation, we propose a gearbox fault diagnosis system to distinguish different fault types of the gearbox. Firstly, signatures of the gear faults were extracted by the demodulation spectrum, image entropy, multi-scale entropy (MSE) and multiband spectral entropy (MBSE). Secondly, these extracted signatures were used to build a decision tree (DT) based model. In our simulations, the vibration signal datasets of gearbox from Industrial Technology Research Institute (ITRI) are utilized. In experimental results, the trained DT models have shown high accuracy of fault detection and fault classification on the test set.

    摘要……………………………………..…………….…………………….……I Abstract……………..……………………………….………………………II 誌謝……………………………………...………….…………………………III 目錄……………………………………………….…………………………….IV 表目錄…………………………………………….……………………………VI 圖目錄……………………………………………….………………………VII 第一章 緒論...…………………………………………………………………1 1.1 前言….……………………………………………………………………1 1.2 研究動機與目的….......…………………………………………………2 1.3 論文架構…......……………………………………………………………3 第二章 特徵抽取方法……………………………………………..…………4 2.1 解調變頻譜(Demodulation spectrum)…...……………………4 2.1.1 傅立葉轉換(Fourier transform, FT)…………………………5 2.1.2 短時傅立葉轉換(Short time fourier tramsform, STFT).6 2.1.3 解調變頻譜………………………………………………………8 2.2 強化型Morlet小波轉換(Enhanced morlet transform)………….…………10 2.2.1 小波轉換(Wavelet transform)…………………………………10 2.2.2 Morlet轉換(Morlet wavelet transform)…………………11 2.2.3 強化型Morlet轉換………………….………………………...14 2.3 多尺度熵(Multiscale entropy, MSE)…………………………16 2.3.1 取樣熵(Sample entropy, SE)………………………......…16 2.3.2 多尺度熵…………..……………….…….……………………...17 2.4 多頻帶頻譜熵(Multi-band spectrum entropy, MBSE)………19 2.4.1 頻譜熵(Spectrum entropy)…………………………………..19 2.4.2 多頻帶頻譜熵…………………………………………………...21 2.5 影像熵(Image entropy)…...............................23 第三章 實驗設備及流程……….……………………....…………………24 3.1 實驗設備………….…………..…………….……………………….24 3.1.1 齒輪箱之基本特性頻率…………………………………..……..28 3.1.2 齒輪箱之轉速狀態差異…….……………………………….…30 3.1.3 齒輪箱之潤滑狀態差異…………………………………………31 3.1.4 齒輪箱之齒輪狀態差異……………………………………...…32 3.2 實驗流程……….……………………..………………………………37 3.2.1 實驗資料收集…………….………………………………….....38 3.2.2 實驗資料處理…………….………………………………....…39 3.2.3 異常診斷………………….………………………………….....39 第四章 建立決策樹(Decision tree)……………………………………40 4.1 使用解調變頻譜抽取特徵……………..…………………….……..41 4.2 使用強化型Morlet轉換抽取特徵……………………………….…..44 4.3 使用多尺度熵抽取特徵……………………………………………..49 4.4 使用多頻帶頻譜熵抽取特徵………………………………………...50 4.5 建立決策樹……………………….……………………………...51 4.6 使用不同實驗資料所需之改進..............................53 第五章 結論及未來展望………………………………………………………59 5.1 結論………………………………………………………………………59 5.2 未來展望……………………………………………..……………….60 參考文獻……………………………….….……………………………………61

    [1] Z. Xu, J. Xuan, T. Shi, B. Wu, and Y. Wu, “A Novel Fault Diagnosis Method of Bearing Based on Improved Fuzzy ARTMAP and Modified Distance Discriminant Technique,” Expert System with Applications, vol. 36, pp. 11801-11807, 2009.
    [2] S.Wadhwani, A. K. Wadhwani, S. P. Gupta and V. Kumar, “Detection of Bearing Failure in Rotating Machine Using Adaptive Neuro-Fuzzy Inference System,” in Power Electronics, Drives and Energy Systems, 2006. PEDES ’06. International Conference on, New Delhi, 2006.
    [3] L. Choen, “Time-frequency distributions-a review,” Proceeding of the IEEE, vol. 77, no. 7, 1989.
    [4] H. Oehlmann, D. Brie, M. Tomczak and A. Richard, “A Method for Analysing Gearbox Faults Using Time-Frequency Representations,” Mechanical Systems and Signal Processing, vol. 11, pp. 529-545, 1997.
    [5] W. J. Staszewski, K. Worden and G. R. Tomlinson, “Time-Frequency Analysis in Gearbox Fault Detection Using the Wigner-Ville Distribution and Pattern Recongnition,” Mechanical Systems and Signal Processing, vol. 11, pp. 673-692, 1997.
    [6] D. Gabor, “Theory of Communications,” Journal of the Institution of Electrical Engineers, vol. 93, no. 4, pp. 429-457, 1946.
    [7] F. Al-Badourl, L. Chedect, and M.Suna, “Non-Stationary Vibration Signal Analysis of Rotating Machinery via Time-Frequency and Wavelet Techniques,” Information Sciences Signal Processing and their Applications, pp. 21-24, 2010.
    [8] J. Lin and M. J. Zuo, “Gearbox Fault Diagnosis Using Adaptive Wavelet Filter,” Mechanical Systems and Signal Processing, vol. 17, pp. 1259-1269, 2003.
    [9] H. Zheng, Z. Li and X. Chen, “Gear Fault Diagnosis Based on Continuous Wavelet Transform,” Mechanical Systems and Signal Processing, vol. 16, pp. 447-457, 2002.
    [10] J. Lin and A. Zhang, “Fault Feature Separation Using Wavelet-ICA Filter,” NDT & E International, vol. 38, pp. 421-427, 2005.
    [11] W. X. Yang and X. M. Ren, “Detecting Impulses in Mechanical Signals by Wavelets,” EURASIP Journal on Applied Signal Processing, vol. 2004, pp. 1156-1162, 2004.
    [12] D. Boulahbal, M. F. Golnaraghi and F. Ismail, “Amplitude and phase wavelet maps for the detection of cracks in geared systems,” Mechanical Systems and Signal Processing, vol. 13, pp. 423-436, 1999.
    [13] W. J. Wang and P. D. McFadden, “Application of Wavelets to Gear Box Vibration Signals for Fault Detection,” Journal of Sound and Vibration, vol. 192, no. 5, pp. 927-939, 1996.
    [14] J. Lin and L. Qu, “Feature Extraction Based on Morlet Wavelet and Its Application for Mechanicla Gault Diagnosis,” Journal of Sound and Vibration, vol. 234, pp. 135-148, 2000.
    [15] B. D. Forrester, “Use of the Wigner-Ville Distribution in Helicopter Transmission Fault Detection,” Proceedings of the Australian Symposium on Signal Processing and Applications, 1989.
    [16] B. D. Forrester, “Analysis of Gear Vibration in the Time-Frequency Domain,” Proceedings of the 44th Meeting of the Mechanical Failures Prevention Group of the Vibration Institute, 1989.
    [17] B. D. Forrester, “Time–Frequency Analysis of Helicopter Transmission Vibration,” Aeronautical Research Laboratory, ARL Propulsion, Melbourne, Technical Report 180, 1990.
    [18] B. D. Forrester, “Time–Frequency Analysis in Machine Fault Detection,” Time–Frequency Signal Analysis, 1992.
    [19] W. J. Staszewski, “The Application of Time-Variant Analysis to Gearbox Fault Detection,” Manchester School of Engineering, Mechanical Engineering Department, the University of Manchester, 1994.
    [20] Y. N. Pen, J. Chen and X. L. Li, “Spectral Entropy: A Complementary Index for Rolling Element Bearing Performance degradation Assessment,” Proc. IMechE Part C: J. Mechanical Engineering Science, no. 223, pp. 1223-1231, 2009.
    [21] J. Hu, R. Shao and Z. Zeng, ”Method of Gear's Fault Diagnosis based on Spectral Entropy,” Journal of Mechanical Transmission, May 2007.
    [22] B. Li, P. Zhang, S. Liang and G. Ren, “Feature Extraction and Selection for Fault Diagnosis of Gear Using Wavelet Entropy and Mutual Information,” in International Conference on Signal Processing, Beijin, China, 2008.
    [23] L. Zong, G. Xiong, H. Liu, H. Zou and W. Guo, “Bearing Fault Diagnosis Using Multi-scale Entropy and Adaptive Neuro-Fuzzy Inference,” Expert System with Applications, vol. 37, pp. 6077-6085, 2010.
    [24] J. L. Lin, J. Y. Liu, C. W. Li, L. F. Tsai and H. Y. Chung, “Motor Shaft Misalignment Detection Using Multiscale Entropy with Wavelet Denoising,” Expert System with Applications, vol. 37, pp. 7200-7204, 2010.
    [25] 王俊傑、吳求文、吳順德、李易宗、吳豐泰,“多尺度頻譜熵在軸承異常監控與診斷之應用,”於 第二十八屆中國機械工程學術研討會, 台中市, 2011.
    [26] R. Yan and R.X. Gao, ”Approximate Entropy as a Diagnosis Tool for Machine Health Monitoring,” Mechanical Systems and Signal Processing, vol. 21, pp. 824-839, 2007.
    [27] R. Yan and R.X. Gao, ”Complexity as a Measure for Machine Health Evalution,” IEEE Transaction on, vol. 53, no. 4, pp. 1327-1334, 2004.
    [28] H. Hong and M. Liang, “Fault Severity Assessment for Rolling Element Bearing Using the Lempel-Ziv Complexity and Continuous Wavelet Transform,” Journal of Sound and Vibration, vol. 320, pp. 452-468, 2009.
    [29] J. Huang, H. Pen and S. Bi, “Bispectrum Entropy Feature Extraction and Its Application for Fault Diagnosis of Gearbox,“ in Fussy Systems (FUZZ), 2010 IEEE International Conference on, Barcelona, 2010.
    [30] R. Hao, Z. Peng, Z. Feng and F. Chu, “Application of Support Vector Machine Based on Pattern Spectrum Entropy in Fault Diagnostics of Rolling Element Bearings,” Measurement Science and Technology, vol. 22, p. 045708, 2011.
    [31] D. Yu, Y. Yang and J. Cheng, “Application of Time Frequency Entropy Method Based on Hilbert Huang Transform to Gear Fault Diagnosis,” Measurement, vol. 40, pp. 823-830, 2007.
    [32] 林庭毅、吳順德、林倪鋒,“基於多尺度方均根植與前饋式倒傳遞網路隻機械錯誤診斷系統,”於 2012中華民國系統科學與工程延討論會, 基隆市, 2012.
    [33] P. D. McFadden, “Detection of Gear Faults by Decomposition of Matched Differences of Vibration Signals,” Mechanical Systems and Signal Processing, vol. 14, pp. 805-817, 2000.
    [34] CRYSTAL instruments, http://www.go-ci.com/
    [35] B. Boashasj, Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, Australia, 2003.
    [36] 褚福磊,彭志科,馮志鵬,李志农,機械故障診断中的現代信號處理方法,第一版,科學出版社,北京,2009年10月.
    [37] P. S. Addison, The Illustrated Wavelet Transform Handbook, Institute of Physics, 2002.
    [38] A. Akansu and R. Haddad, Multiresolution Signal Decomposition: Transforms, Subbands, Wavelets, Academic Press, 1992.
    [39] S. Mallat, A wavelet tour of signal processing, 2nd Edition, Academic Press, 1999.
    [40] A. Bernardino and J. Santos, “A Real-time Gabor Primal Sketch for Visual Attention,” 2nd Iberian Conference on Pattern Recognition and Image Analysis, 2005.
    [41] P. Goupillaud, A. Grossman and J. Morlet, Cycle-Octave and Related Transforms in Seismic Signal Analysis, Geoexploration, 1984.
    [42] M. T. Taner, “Joint Time/Frequency Analysis, Q Quality factor and Dispersion computation using Gabor-Morlet wavelets or Gabor-Morlet transform,” Rock Solid Images, 1983.
    [43] Y. N. Jeng, C. T. Chen and Y. C. Cheng, “The Enhanced Morlet Transform via Iterative Filter to Study Turbulent Data Strings,” The 6th Aslan Computational Fluid Dynamics Conference Taiwan, 2005.
    [44] 鄭育能、陳季聰、鄭又齊,“觀察一維紊流數據的一種有效之新拆解法,”第十二屆全國計算流體力學學術研討論會, 2005.
    [45] M. Costa, A. L. Goldberger amd C. K. Peng, “Multiscale Entropy Analysis of Complex Physiological Time Series,” Physical Review Letters, vol. 9, no. 6, pp. 068102-1-068102-4, 2002.
    [46] M. Costa, C. K. Peng, A. L. Goldberger and J. M. Hausdorff, “Multiscale Entropy Analysis of Human Gait Dynamics,” Physica A: Statistical Mechanics and its Applications, vol. 330, pp. 53-60, 2003.
    [47] J. S. Richman and J. R. Moorman, “Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy,” American Journal of Physiology Heart and Circulatory Physiology, vol. 278, no. 6, pp. 2039-2049, 2000.
    [48] 國立臺灣師範大學訊號處理實驗室http://spl.mt.ntnu.edu.tw/ITRI_data_menu.html
    [49] T. S. Irwin, Gearbox Spectral Components and Monitoring Methods.
    [50] 傅继盈,蒋秀珍,機械學基礎,第三版,哈爾濱工業大學出版社,2003年8月.
    [51] Y. G. Lei, M. J. Zuo, Z. J. He and Y. Y. Zi, “A Multidimensional Hybrid Intelligent Method for Gear Fault Diagnosis,” Expert Systems With Applications, vol. 37, pp. 1419-1430, 2010.
    [52] Z. X. Li, X. P. Yan, C. Q. Yuan, Z. X. Peng and L. Li, “Virtual Prototype and Experimental Research on Gear Multi-Fault Diagnosis Using Wavelet-Autoregressive Model and Principal Component Analysis Method,” Mechanical System and Signal Processing, no. 25, pp. 2589-2607, 2011.
    [53] W. X. Sun, J. Chen and J. Q. Li, “Decision tree and PCA-based Fault Diagnosis of Rotating Machinery,” Mechanical System and Signal Processing, vol. 21, pp. 1300-1317, 2007.
    [54] W. C. Kao, C. K. Yu, C. P. Shen and P. Y. Hsiao, “Electrocardiogram Analysis with Adaptive Feature Seletion and Support Vector Machines,“ in Proc. IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 2006.
    [55] C. W. Hsu and C.J. Lin, “A Comparison of Method for Multiclass Support Vector Machines,” IEEE Transactions on Neural Network, vol. 13, no. 2, pp. 415-425, 2002.
    [56] W. Sun, J. Chen, J. Li, “Decision tree and PCA-based fault diagnosis of rotating machinery,” Mechanical Systems and Signal Processing, vol. 21, pp. 1300-1317, 2006.

    QR CODE