簡易檢索 / 詳目顯示

研究生: 邱伯特
Qiu, Bo-Te
論文名稱: 鎳有機金屬骨架薄膜之長晶機制並應用於染料敏化太陽能電池之電觸媒
Growth Mechanism of [Ni(6,6’-mercaptodiniconate)(H2O)2]n Metal-organic Framework Thin Film and Its Application as Electrocatalyst in Dye-sensitized Solar Cells
指導教授: 李君婷
Li, Chun-Ting
口試委員: 林建村
Lin, Jiann-T'suen
林嘉和
Lin, Chia-Her
李君婷
Li, Chun-Ting
口試日期: 2023/06/20
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 68
中文關鍵詞: 對電極染料敏化太陽能電池電催化劑有機金屬骨架非白金
英文關鍵詞: Counter electrodes, Dye-sensitized solar cells, Electro-catalyst, Metal-organic framework, Pt-free
研究方法: 實驗設計法行動研究法
DOI URL: http://doi.org/10.6345/NTNU202301054
論文種類: 學術論文
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由原位配基合成的方法,以6,6’-二硫二菸酸(H2dtdn)作為初始物形成mdn配基,成功合成一種結構為[Ni(mdn)(H2O)2]n的鎳有機金屬骨架材料(MOF)。利用2-巰基-3-吡啶甲酸所形成的自組裝單層,可使[Ni(mdn)(H2O)2]n薄膜生長在不同的導電基材上,例如FTO導電玻璃、碳布、發泡鎳。MOF薄膜由基材底部開始生長的反應機制可分為以下的幾個步驟:(1) 2-巰基-3-吡啶甲酸錨定在基材上;(2) 在2-巰基-3-吡啶甲酸上的硫醇基和質子裂解後,分別形成3-吡啶羧酸根自由基和去質子的2-巰基菸酸根;(3) 從2-巰基-3-吡啶甲酸得到的3-吡啶羧酸根自由基會與從6,6’-二硫二菸酸得到的去質子6-巰基菸酸根形成碳-硫鍵結;從2-巰基-3-吡啶甲酸得到的去質子2-巰基菸酸根與從6,6’-二硫二菸酸得到的3-吡啶羧酸根自由基形成碳-硫鍵結;(4) 兩種鍵結都會形成6-(3-carboxylatopyridin-2-ylthio)nicotinate作為錨定基團;(5) 鎳離子(II)會與基材上的錨定基團配位;(6) mdn與鎳離子(II)的配位不斷延伸而形成[Ni(mdn)(H2O)2]n。當上述[Ni(mdn)(H2O)2]n@CC及[Ni(mdn)(H2O)2]n@NF作為染料敏化太陽能電池(DSSCs)的對電極時,MOF薄膜對於I3–還原的催化活性越高,染敏電池的光電轉換效率就會越好。通過調整反應時間進而調整薄膜的粗糙度、厚度以及中孔率可獲得最優化的[Ni(mdn)(H2O)2]n@CC (標示為D12h@CC)。有鑑於發泡鎳在MOF生長過程中會伴隨蝕刻反應,調整了薄膜的粗糙度、厚度以及附著力可獲得最佳的[Ni(mdn)(H2O)2]n@NF (標示為D06h@NF)。在染敏太陽能電池的測量上,D12h@CC與D06@NF 分別在一個太陽光下達到了9.30%與8.42%的效率。這些電極表現出的電化學性能比稀貴的白金碳布電極(9.36%)與白金發泡鎳電極(8.78%)來說更有競爭力。而在昏暗的低照度下,由D12h@CC組裝的染敏電池在6000流明達到10.80%,以及在3000流明達到15.52%的效率,顯示此材料對於染敏電池加入互聯網元件有良好的潛力。

    A nickel-based metal-organic framework (MOF) of [Ni(mdn)(H2O)2]n (mdn=6,6’-mercaptodinicotinate) was successfully synthesized via an in-situ mdn ligand formation from the starting material, 6,6’-dithiodinicotinic acid (H2dtdn), followed by ligand coordination reaction. With the presence of a self-assembly monolayer of 2-mercaptopyridine-3-carboxylic acid (2-mna), various [Ni(mdn)(H2O)2]n thin films were decently deposited on different conducting substrates, e.g., fluroine-doped tin oxide (FTO), carbon cloth (CC), and nickel foam (NF). A bottom-up crystal growth mechanism was followed: (1) anchoring of 2-mna on the substrate; (2) cleavages of thiols or protons of 2-mna to afford 3-pyridinecarboxylate radical and deprotonated 2- mercaptonicotinate radical; (3) C-S coupling between 3-pyridinecarboxylate radical and deprotonated 6-mercaptonicotinate radical; (4) formation of 6-(3-carboxylatopyridin-2-ylthio)nicotinate as the anchoring group; (5) Ni(II) ion coordination with the two pyridines of the anchoring group; (6) the mdn and Ni(II) coordination to extend [Ni(mdn)(H2O)2]n building block. When these [Ni(mdn)(H2O)2]n@CC and [Ni(mdn)(H2O)2]n@NF electrodes were applied as the counter electrodes in dye-sensitized solar cells (DSSCs), better electro-catalytic activity of a film toward I3– reduction, could lead to the better cell conversion efficiency. As etching of NF may occur during operation, the roughness thickness and adhesion strength of the film have to be adjusted for optimal [Ni(mdn)(H2O)2]n@NF(D06@NF) electrode.The DSSCs coupled with D12h@CC and D06h@NF reached 9.30% and 8.42% at 1 sun, repectively. Therefore, these electrodes had performance very competitive with the expensive Pt@CC (9.36%) and Pt@NF (8.78%). Under a dim light illumination, the cell with D12h@CC provided 10.80% at 6 klux and 15.52% at 3 klux, implying its good potential for applications in Internt of Things.

    致謝 i 中文摘要 iii Abstract iv Table of Contents v List of Tables vi List of Figures vii Nomenclatures x Chapter 1 Introduction 1 1-1 Metal Organic Frameworks 1 1-2 MOF electrocatalysts 8 1-3 Motivation 20 Chapter 2 Experimental Section 21 2-1 Materials 21 2-2 Preparation of photoanode 21 2-3 Preparation of counter electrode 24 2-4 DSSC assembly 25 2-5 Instruments and analyses 26 Chapter 3 Result and Discussion 28 3-1 Pristine [Ni(mdn)(H2O)2]n film 28 3-2 Co-doped [Ni(mdn)(H2O)2]n 36 3-3 Optimization of [Ni(mdn)(H2O)2]n 38 3-4 Electrochemical properties 48 Conclusions 57 References 59 Appendix Curriculum vitae 67

    1. Amini, A.; Kazemi, S.; Safarifard, V., Metal-organic framework-based nanocomposites for sensing applications – A review. Polyhedron, 2020, 177, 114260.
    2. Chen, L.; Zhang, X.; Cheng, X.; Xie, Z.; Kuang, Q.; Zheng, L., The function of metal–organic frameworks in the application of MOF-based composites. Nanoscale Advances, 2020, 2, 2628-2647.
    3. Wang, H.; Zhu, Q.-L.; Zou, R.; Xu, Q., Metal-Organic frameworks for energy applications. Chem, 2017, 2, 52-80.
    4. Lee, Y.-R.; Kim, J.; Ahn, W.-S., Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 2013, 30, 1667-1680.
    5. Stock, N.; Biswas, S., Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chemical Reviews, 2012, 112, 933-969.
    6. Ploetz, E.; Engelke, H.; Lächelt, U.; Wuttke, S., The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials. Advanced Functional Materials, 2020, 30, 1909062.
    7. Lyu, H.; Ji, Z.; Wuttke, S.; Yaghi, O. M., Digital reticular chemistry. Chem, 2020, 6, 2219-2241.
    8. Morris, R. E., Modular materials from zeolite-like building blocks. Journal of Materials Chemistry, 2005, 15, 931-938.
    9. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science, 2013, 341, 1230444.
    10. Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M., Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Science Advances, 2018, 4, eaat9180.
    11. Wu, T.; Liu, X.; Liu, Y.; Cheng, M.; Liu, Z.; Zeng, G.; Shao, B.; Liang, Q.; Zhang, W.; He, Q.; Zhang, W., Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation. Coordination Chemistry Reviews, 2020, 403, 213097.
    12. Wang, Q.; Gao, Q.; Al-Enizi, A. M.; Nafady, A.; Ma, S., Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorganic Chemistry Frontiers, 2020, 7, 300-339.
    13. Adegoke, K. A.; Maxakato, N. W., Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. Materials Today Energy, 2021, 21, 100816.
    14. Lu, X. F.; Xia, B. Y.; Zang, S.-Q.; Lou, X. W., Metal–organic frameworks based electrocatalysts for the oxygen reduction reaction. Angewandte Chemie International Edition, 2020, 59, 4634-4650.
    15. Zhang, X.; Yang, C.; An, P.; Cui, C.; Ma, Y.; Liu, H.; Wang, H.; Yan, X.; Li, G.; Tang, Z., Creating enzyme-mimicking nanopockets in metal-organic frameworks for catalysis. Science Advances, 2022, 8, eadd5678.
    16. Cao, F.; Zhang, L.; You, Y.; Zheng, L.; Ren, J.; Qu, X., An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angewandte Chemie International Edition, 2020, 59, 5108-5115.
    17. Hai, G.; Wang, H., Theoretical studies of metal-organic frameworks: Calculation methods and applications in catalysis, gas separation, and energy storage. Coordination Chemistry Reviews, 2022, 469, 214670.
    18. Wen, Y.; Zhang, J.; Xu, Q.; Wu, X.-T.; Zhu, Q.-L., Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coordination Chemistry Reviews, 2018, 376, 248-276.
    19. Xu, C.; Fang, R.; Luque, R.; Chen, L.; Li, Y., Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 2019, 388, 268-292.
    20. Liu, J.; Goetjen, T. A.; Wang, Q.; Knapp, J. G.; Wasson, M. C.; Yang, Y.; Syed, Z. H.; Delferro, M.; Notestein, J. M.; Farha, O. K.; Hupp, J. T., MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chemical Society Reviews, 2022, 51, 1045-1097.
    21. Kong, L.; Zhong, M.; Shuang, W.; Xu, Y.; Bu, X.-H., Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chemical Society Reviews, 2020, 49, 2378-2407.
    22. Valvekens, P.; Vermoortele, F.; De Vos, D., Metal–organic frameworks as catalysts: the role of metal active sites. Catalysis Science & Technology, 2013, 3, 1435-1445.
    23. Tanabe, K. K.; Cohen, S. M., Postsynthetic modification of metal–organic frameworks—a progress report. Chemical Society Reviews, 2011, 40, 498-519.
    24. Yin, Z.; Wan, S.; Yang, J.; Kurmoo, M.; Zeng, M.-H., Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews, 2019, 378, 500-512.
    25. Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A., Post-synthetic modification of metal–organic frameworks toward applications. Advanced Functional Materials, 2021, 31, 2006291.
    26. Cohen, S. M., Postsynthetic methods for the Functionalization of metal–organic frameworks. Chemical Reviews, 2012, 112, 970-1000.
    27. Segura, J. L.; Royuela, S.; Mar Ramos, M., Post-synthetic modification of covalent organic frameworks. Chemical Society Reviews, 2019, 48, 3903-3945.
    28. Lim, J.; Lee, S.; Ha, H.; Seong, J.; Jeong, S.; Kim, M.; Baek, S. B.; Lah, M. S., Amine-tagged fragmented ligand installation for covalent modification of MOF-74. Angewandte Chemie International Edition, 2021, 60, 9296-9300.
    29. Eshraghi, F.; Anbia, M.; Salehi, S., Dative post synthetic methods on SBUs of MWCNT@MOFs hybrid composite and its effect on CO2 uptake properties. Journal of Environmental Chemical Engineering, 2017, 5, 4516-4523.
    30. Wu, D.; Zhang, P.-F.; Yang, G.-P.; Hou, L.; Zhang, W.-Y.; Han, Y.-F.; Liu, P.; Wang, Y.-Y., Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coordination Chemistry Reviews, 2021, 434, 213709.
    31. Chen, L.; Xu, Q., Metal-organic framework composites for catalysis. Matter, 2019, 1, 57-89.
    32. Zhao, X.; Wang, Y.; Li, D.-S.; Bu, X.; Feng, P., Metal–organic frameworks for separation. Advanced Materials, 2018, 30, 1705189.
    33. Liu, J.; Zhu, D.; Guo, C.; Vasileff, A.; Qiao, S.-Z., Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Advanced Energy Materials, 2017, 7, 1700518.
    34. Dresselhaus, M. S.; Thomas, I. L., Alternative energy technologies. Nature, 2001, 414, 332-337.
    35. Figueiredo, J. L.; Pereira, M. F. R., Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts. Journal of Energy Chemistry, 2013, 22, 195-201.
    36. Xie, K.; Xia, W.; Masa, J.; Yang, F.; Weide, P.; Schuhmann, W.; Muhler, M., Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction. Journal of Energy Chemistry, 2016, 25, 282-288.
    37. Bhatt, M. D.; Lee, J. Y., Advancement of platinum (Pt)-free (Non-Pt precious metals) and/or metal-free (Non-precious-metals) electrocatalysts in energy applications: A review and perspectives. Energy & Fuels, 2020, 34, 6634-6695.
    38. Peng, Y.; Bai, Y.; Liu, C.; Cao, S.; Kong, Q.; Pang, H., Applications of metal–organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coordination Chemistry Reviews, 2022, 466, 214602.
    39. Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F., Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catalysis, 2014, 4, 3957-3971.
    40. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F., Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355, eaad4998.
    41. Mahmood, A.; Guo, W.; Tabassum, H.; Zou, R., Metal-organic framework-based nanomaterials for electrocatalysis. Advanced Energy Materials, 2016, 6, 1600423.
    42. Zhu, Y. P.; Guo, C.; Zheng, Y.; Qiao, S.-Z., Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Accounts of Chemical Research, 2017, 50, 915-923.
    43. Liu, W.; Zhang, H.; Li, C.; Wang, X.; Liu, J.; Zhang, X., Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. Journal of Energy Chemistry, 2020, 47, 333-345.
    44. Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X., A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 17587-17603.
    45. Li, K.; Li, Y.; Peng, W.; Zhang, G.; Zhang, F.; Fan, X. Bimetallic iron–cobalt catalysts and their applications in energy-related electrochemical reactions Catalysts [Online], 2019.
    46. Zhang, C.; Yang, H.; Zhong, D.; Xu, Y.; Wang, Y.; Yuan, Q.; Liang, Z.; Wang, B.; Zhang, W.; Zheng, H.; Cheng, T.; Cao, R., A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 9536-9544.
    47. Khalid, M.; Hassan, A.; Honorato, A. M. B.; Crespilho, F. N.; Varela, H., Nano-flocks of a bimetallic organic framework for efficient hydrogen evolution electrocatalysis. Chemical Communications, 2018, 54, 11048-11051.
    48. Cheng, W.; Zhao, X.; Su, H.; Tang, F.; Che, W.; Zhang, H.; Liu, Q., Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nature Energy, 2019, 4, 115-122.
    49. Zhang, B.; Zheng, Y.; Ma, T.; Yang, C.; Peng, Y.; Zhou, Z.; Zhou, M.; Li, S.; Wang, Y.; Cheng, C., Designing MOF nanoarchitectures for electrochemical water splitting. Advanced Materials, 2021, 33, 2006042.
    50. Simon, P.; Gogotsi, Y.; Dunn, B., Where do batteries end and supercapacitors begin? Science, 2014, 343, 1210-1211.
    51. Sun, Y.; Liu, N.; Cui, Y., Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy, 2016, 1, 16071.
    52. Ji, X.; Nazar, L. F., Advances in Li–S batteries. Journal of Materials Chemistry, 2010, 20, 9821-9826.
    53. Zhao, R.; Liang, Z.; Zou, R.; Xu, Q., Metal-organic frameworks for batteries. Joule, 2018, 2, 2235-2259.
    54. Azadfalah, M.; Sedghi, A.; Hosseini, H., Synthesis of nano-flower metal–organic framework/graphene composites as a high-performance electrode material for supercapacitors. Journal of Electronic Materials, 2019, 48, 7011-7024.
    55. Muschi, M.; Serre, C., Progress and challenges of graphene oxide/metal-organic composites. Coordination Chemistry Reviews, 2019, 387, 262-272.
    56. Zheng, Y.; Zheng, S.; Xue, H.; Pang, H., Metal-organic frameworks/graphene-based materials: preparations and applications. Advanced Functional Materials, 2018, 28, 1804950.
    57. Qi, L.-Y.; Zhang, Y.-W.; Zuo, Z.-C.; Xin, Y.-L.; Yang, C.-K.; Wu, B.; Zhang, X.-X.; Zhou, H.-H., In situ quantization of ferroferric oxide embedded in 3D microcarbon for ultrahigh performance sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8822-8829.
    58. Zhao, Z.; Wang, S.; Liang, R.; Li, Z.; Shi, Z.; Chen, G., Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries. Journal of Materials Chemistry A, 2014, 2, 13509-13512.
    59. Dong, C.; Xu, L., Cobalt- and cadmium-based metal–organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries. ACS Applied Materials & Interfaces, 2017, 9, 7160-7168.
    60. Zheng, J.; Tian, J.; Wu, D.; Gu, M.; Xu, W.; Wang, C.; Gao, F.; Engelhard, M. H.; Zhang, J.-G.; Liu, J.; Xiao, J., Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Letters, 2014, 14, 2345-2352.
    61. Boorboor Ajdari, F.; Kowsari, E.; Niknam Shahrak, M.; Ehsani, A.; Kiaei, Z.; Torkzaban, H.; Ershadi, M.; Kholghi Eshkalak, S.; Haddadi-Asl, V.; Chinnappan, A.; Ramakrishna, S., A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coordination Chemistry Reviews, 2020, 422, 213441.
    62. Zhang, L.; Huang, D.; Hu, N.; Yang, C.; Li, M.; Wei, H.; Yang, Z.; Su, Y.; Zhang, Y., Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. Journal of Power Sources, 2017, 342, 1-8.
    63. Wu, H. B.; Lou, X. W., Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Science Advances, 2017, 3, eaap9252.
    64. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 2017, 16, 220-224.
    65. Wang, Y.; Liu, Y.; Wang, H.; Liu, W.; Li, Y.; Zhang, J.; Hou, H.; Yang, J., Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Applied Energy Materials, 2019, 2, 2063-2071.
    66. Li, Q.; Wang, X.; Yang, N.; He, F.; Yang, Y.; Wu, B.; Chu, J.; Zhou, A.; Xiong, S., Hydrangea-like NiCo-based bimetal-organic frameworks, and their pros and cons as supercapacitor electrode materials in aqueous electrolytes. Zeitschrift für anorganische und allgemeine Chemie, 2019, 645, 1022-1030.
    67. Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C., Stable metal–organic frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, 1704303.
    68. Son, Y.-R.; Ryu, S. G.; Kim, H. S., Rapid adsorption and removal of sulfur mustard with zeolitic imidazolate frameworks ZIF-8 and ZIF-67. Microporous and Mesoporous Materials, 2020, 293, 109819.
    69. Huang, B. L.; McGaughey, A. J. H.; Kaviany, M., Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations. International Journal of Heat and Mass Transfer, 2007, 50, 393-404.
    70. Getachew, N.; Chebude, Y.; Diaz, I.; Sanchez-Sanchez, M., Room temperature synthesis of metal organic framework MOF-2. Journal of Porous Materials, 2014, 21, 769-773.
    71. Grant Glover, T.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghi, O., MOF-74 building unit has a direct impact on toxic gas adsorption. Chemical Engineering Science, 2011, 66, 163-170.
    72. Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G., Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. Journal of the American Chemical Society, 2005, 127, 13519-13521.
    73. Llewellyn, P. L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.; Hamon, L.; De Weireld, G.; Chang, J.-S.; Hong, D.-Y.; Kyu Hwang, Y.; Hwa Jhung, S.; Férey, G., High uptakes of CO2 and CH4 in mesoporous Metal—Organic frameworks MIL-100 and MIL-101. Langmuir, 2008, 24, 7245-7250.
    74. Liu, Y.; Hu, E.; Khan, E. A.; Lai, Z., Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353, 36-40.
    75. Zukal, A.; Kubů, M., A new adsorption isotherm for C5 hydrocarbons on metal–organic framework Cu3(BTC)2. Adsorption, 2015, 21, 99-105.
    76. IEA, N., Projected costs of generating electricity. International Energy Agency, 2010, 10, 618.
    77. Spoerke, E. D.; Small, L. J.; Foster, M. E.; Wheeler, J.; Ullman, A. M.; Stavila, V.; Rodriguez, M.; Allendorf, M. D., MOF-sensitized solar sells enabled by a pillared porphyrin framework. The Journal of Physical Chemistry C, 2017, 121, 4816-4824.
    78. Chen, T.-Y.; Huang, Y.-J.; Li, C.-T.; Kung, C.-W.; Vittal, R.; Ho, K.-C., Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy, 2017, 32, 19-27.
    79. Tributsch, H., Reaction of excited chlorophyll molecules at electrodes and in photosynthesis*
    Photochemistry and Photobiology, 1972, 16, 261-269.
    80. O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737-740.
    81. Yeoh, M.-E.; Chan, K.-Y., Recent advances in photo-anode for dye-sensitized solar cells: a review. International Journal of Energy Research, 2017, 41, 2446-2467.
    82. Tributsch, H., Reaction of excited chlorophyll molecules at electrodes and in photosynthesis*. Photochemistry and Photobiology, 1972, 16, 261-269.
    83. BYRANVAND, M. M.; KHARAT, A. N.; Badiei, A.; Bazargan, M., Electron transfer in dye-sensitized solar cells. Journal of Optoelectronic and Biomedical Materials, 2012, 4, 49-57.
    84. Nazeeruddin, M. K.; Zakeeruddin, S. M.; Lagref, J. J.; Liska, P.; Comte, P.; Barolo, C.; Viscardi, G.; Schenk, K.; Graetzel, M., Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248, 1317-1328.
    85. Hauch, A.; Georg, A., Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta, 2001, 46, 3457-3466.
    86. Li, Y.; Pang, A.; Wang, C.; Wei, M., Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 17259-17264.
    87. Gu, A.; Xiang, W.; Wang, T.; Gu, S.; Zhao, X., Enhance photovoltaic performance of tris(2,2'-bipyridine) cobalt(II)/(III) based dye-sensitized solar cells via modifying TiO2 surface with metal-organic frameworks. Solar Energy, 2017, 147, 126-132.
    88. Hilal, M. E.; Aboulouard, A.; Akbar, A. R.; Younus, H. A.; Horzum, N.; Verpoort, F. Progress of MOF-derived functional materials toward industrialization in solar cells and metal-air batteries Catalysts [Online], 2020.
    89. Ou, J.; Xiang, J.; Liu, J.; Sun, L., Surface-supported metal–organic framework thin-film-derived transparent CoS1.097@N-Doped carbon film as an efficient counter electrode for bifacial dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2019, 11, 14862-14870.
    90. Yang, A.-N.; Lin, J. T.; Li, C.-T., Electroactive and sustainable Cu-MOF/PEDOT composite electrocatalysts for multiple redox mediators and for high-performance dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2021, 13, 8435-8444.
    91. Jiang, X.; Li, H.; Li, S.; Huang, S.; Zhu, C.; Hou, L., Metal-organic framework-derived Ni–Co alloy@carbon microspheres as high-performance counter electrode catalysts for dye-sensitized solar cells. Chemical Engineering Journal, 2018, 334, 419-431.
    92. Kim, S.-N.; Kim, J.; Kim, H.-Y.; Cho, H.-Y.; Ahn, W.-S., Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catalysis Today, 2013, 204, 85-93.
    93. Duan, C.; Yu, Y.; Hu, H., Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy & Environment, 2022, 7, 3-15.
    94. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M., Ultrahigh porosity in metal-organic frameworks. Science, 2010, 329, 424-428.
    95. Mahmoodi, N. M.; Abdi, J., Nanoporous metal-organic framework (MOF-199): Synthesis, characterization and photocatalytic degradation of Basic Blue 41. Microchemical Journal, 2019, 144, 436-442.
    96. Xiao, T.; Liu, D., Progress in the synthesis, properties and applications of ZIF-7 and its derivatives. Materials Today Energy, 2019, 14, 100357.
    97. Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M., Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorganic Chemistry, 2012, 51, 6443-6445.
    98. Jia, G.; Zhang, W.; Jin, Z.; An, W.; Gao, Y.; Zhang, X.; Liu, J., Electrocatalytically Active MOF/Graphite Oxide Hybrid for Electrosynthesis of Dimethyl Carbonate. Electrochimica Acta, 2014, 144, 1-6.
    99. Ma, N.; Fei, C.; Wang, J.; Wang, Y., Fabrication of NiFe-MOF/cobalt carbonate hydroxide hydrate heterostructure for a high-performance electrocatalyst of oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 917, 165511.
    100. Sun, J.; Hu, X.; Huang, Z.; Huang, T.; Wang, X.; Guo, H.; Dai, F.; Sun, D., Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Research, 2020, 13, 2056-2062.
    101. Gao, R.; Li, G.-D.; Hu, J.; Wu, Y.; Lian, X.; Wang, D.; Zou, X., In situ electrochemical formation of NiSe/NiOx core/shell nano-electrocatalysts for superior oxygen evolution activity. Catalysis Science & Technology, 2016, 6, 8268-8275.
    102. 賴君瑋(2022)。銅摻雜之鈷有機金屬骨架應用於染料敏化太陽能電池對電極。國立台灣師範大學。化學系碩士論文,台北市。.
    103. Yuan, N.; Sheng, T.; Tian, C.; Hu, S.; Fu, R.; Wu, X., In situ cleavage and coupling of sulfur-carbon (sp2) bond towards a two-dimensional mesh construction. Inorganic Chemistry Communications, 2011, 14, 649-653.
    104. J. Blake, A.; R. Champness, N.; S. M. Chung, S.; Li, W.-S.; Schröder, M., In situ ligand synthesis and construction of an unprecedented three-dimensional array with silver(i): a new approach to inorganic crystal engineering. Chemical Communications, 1997, 1675-1676.
    105. Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W.-S.; Withersby, M. A.; Schröder, M., Inorganic crystal engineering using self-assembly of tailored building-blocks. Coordination Chemistry Reviews, 1999, 183, 117-138.
    106. Hu, T.; Bi, W.; Hu, X.; Zhao, X.; Sun, D., Construction of metal−organic frameworks with novel {Zn8O13} SBU or chiral channels through in situ ligand reaction. Crystal Growth & Design, 2010, 10, 3324-3326.
    107. Zhang, X.-M., Hydro(solvo)thermal in situ ligand syntheses. Coordination Chemistry Reviews, 2005, 249, 1201-1219.
    108. Wang, J.; Zhong, Q.; Xiong, Y.; Cheng, D.; Zeng, Y.; Bu, Y., Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors. Applied Surface Science, 2019, 483, 1158-1165.
    109. Jia, X.; Wang, M.; Liu, G.; Wang, Y.; Yang, J.; Li, J., Mixed-metal MOF-derived Co-doped Ni3C/Ni NPs embedded in carbon matrix as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 24572-24579.
    110. Verlato, E.; Cattarin, S.; Comisso, N.; Gambirasi, A.; Musiani, M.; Vázquez-Gómez, L., Preparation of Pd-modified Ni foam electrodes and their use as anodes for the oxidation of alcohols in basic media. Electrocatalysis, 2012, 3, 48-58.
    111. Grdeń, M.; Alsabet, M.; Jerkiewicz, G., Surface science and electrochemical analysis of nickel foams. ACS Applied Materials & Interfaces, 2012, 4, 3012-3021.
    112. Zhang, J.; Balakrishnan, P.; Chang, Z.; Sun, P.; Su, H.; Xing, L.; Xu, Q., Boosting the performance of alkaline direct ethanol fuel cell with low-Pd-loading nickel foam electrode via mixed acid-etching. International Journal of Hydrogen Energy, 2022, 47, 9672-9679.
    113. Sun, H.; Zhang, L.; Wang, Z.-S., Single-crystal CoSe2 nanorods as an efficient electrocatalyst for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 16023-16029.
    114. Popov, A. I.; Geske, D. H., Studies on the chemistry of halogen and of polyhalides. XVI. voltammetry of bromine and interhalogen species in acetonitrile. Journal of the American Chemical Society, 1958, 80, 5346-5349.
    115. Saygili, Y.; Söderberg, M.; Pellet, N.; Giordano, F.; Cao, Y.; Muñoz-García, A. B.; Zakeeruddin, S. M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G.; Kavan, L.; Moser, J.-E.; Grätzel, M.; Hagfeldt, A.; Freitag, M., Copper bipyridyl redox mediators for dye-sensitized solar cells with high photovoltage. Journal of the American Chemical Society, 2016, 138, 15087-15096.

    無法下載圖示 電子全文延後公開
    2025/07/24
    QR CODE