簡易檢索 / 詳目顯示

研究生: 楊智琨
Yang, Jhin-Kun
論文名稱: 基於鄰接矩陣修飾之社群偵測演算法
Modified Adjacency Matrix Based Community Detection Algorithm
指導教授: 陳志銘
Chen, Chih-Ming
陳瑄易
Chen, Syuan-Yi
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 82
中文關鍵詞: 社群偵測鄰接矩陣Martelot與Hankin的演算法(FMSm Algorithm)前處理品質塊膜度
英文關鍵詞: Community Detection, Adjacency Matrix, Martelot and Hankin’s Algorithm, Pretreatment, Modularity
論文種類: 學術論文
相關次數: 點閱:76下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 社群偵測(community detection)是社會網路分析(social network analysis)所使用的一種方法之一,通過比對社群網路內實體之間的連線關係能找出網路當中看不到的隱性族群,能用已挖掘潛藏在數據背後所隱藏的重要訊息,在這近十年來,已受到各領域學者的關注。期間,亦有不少針對分群定義社群偵測的演算法不斷被學者提出。
    在社群偵測演算法當中,本研究以Martelot與Hankin提出的快速品質塊膜度最佳化演算法(以下簡稱FMSm演算法)為基礎,提出強化特定網路節點關連之方法探討鄰接矩陣(adjacency matrix)修飾對FMSm演算法在社群偵測產生的影響。
    在節點間鄰接關係之修飾中,本研究基於相同族群之節點會有高度關聯性之條件及過去文獻經常使用的隨機漫步法提出以共同好友集與PageRank方法從原始鄰接矩陣中萃取精煉矩陣,並與原始鄰接矩陣疊加之修飾演算法-F-FMSm與P-FMSm。經實驗結果證實,利用本研究所提出鄰接關係之修飾,能增加網路內部節點間相似關聯的差異性,使社群偵測演算法在判別節點所屬族群時,在分歧點差異較多之情況下將節點分至正確的族群當中。在標竿模型下量測,F-FMSm與P-FMSm在標竿網路樣本中最高可提升NMI (Normalized Mutual Information) 量值9.5%與6.2%,在非結合基因類型之演算法當中,此方法中有最優良的整體表現。

    Community detection is one of the methods for social network analysis. By comparing the connections among entities in a social network, community detection discovers important messages hidden in the data. This method has become the focus of research in various fields for the past decade, during which time numerous algorithms for community definition and community detection have been proposed.

    The community detection algorithm used in this study is based on the Fast Multi-Scale Detection algorithm (hereafter referred to as the FMSm algorithm) proposed by Martelot and Hankin, which enhances the association between specific network nodes, where the study investigated the effects of adjacency matrix modification in the FMSm algorithm.

    In terms of node adjacency relationship modification, this study proposed using common friend set and PageRank method to extract refined matrix from original adjacency matrix and superpose the original adjacency matrix with modification algorithms F-FMSm and P-FMSm, based on the high association between nodes in the same community and the Random Walk method used in much past research. Results show that with the adjacency relationship modification proposed by this study, the difference in association between internal nodes in the network can be increased, so that when the community detection algorithm determines the community of a node, the node can be assigned to the correct community when there are more differences between branch points. When measured in the benchmark model, F-FMSm and P-FMSm can increase Normalized Mutual Information (NMI) by 9.5% and 6.2% respectively in benchmark network samples. With non-genetic algorithms, this method yielded the best overall performance.

    摘要       i ABSTRACT iii 目錄 vi 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2研究目的 3 1.3研究問題 4 1.4論文架構 5 第二章 文獻探討 7 2.1社群網路分析 7 2.2分群品質塊膜函數 12 2.2.1 無向型網路品質檢測 12 2.2.2 有向型網路品質檢測 14 2.3凝聚型演算法-FMSm 15 2.3.1 凝聚型演算法概述 15 2.3.2 BGLL演算法 16 2.3.3 FMSm演算法 18 2.3.3 FMSm演算法-現存問題 23 2.3.4 FMSm-演算法結構 25 第三章 研究方法 30 3.1 BGLL演算法之問題 30 3.2 二元無向網路鄰接矩陣之修飾方法 30 3.2.1共同好友集矩陣 32 3.2.2精煉型鄰接矩陣 34 3.2.3修飾型鄰接矩陣 35 3.3 有向網路與鄰接矩陣之修飾方法 35 3.3.1 PageRank 36 3.3.2精煉型鄰接矩陣 37 3.3.3修飾型鄰接矩陣 38 3.5實驗設計 40 3.5.1 GN標竿模型 40 3.5.2 LFR標竿模型 41 3.5.3NMI 42 3.5.4實驗架構 43 第四章 實驗結果與分析 44 4.1 不同參數調節對FMSm演算法分群成效影響 45 4.1.1參數調整在無向二元網路上的影響 45 4.1.2 參數調整在有向二元網路上的影響 52 4.1.3綜合結果比較 57 4.2 以修飾鄰接矩陣對FMSm演算法做輸入之方法在標竿模型上的表現 57 4.2.1 修飾鄰接關係在無向二元網路上的影響 57 4.2.2 修飾鄰接關係在有向二元網路上的影響 61 4.2.3 綜合結果比較 64 4.3 1提出方法與過去演算法於在標竿模型上的比較 64 4.4 提出方法與過去演算法於在標竿模型上的比較 67 4.5 F-FMSm分群品質量值穩定度比較 70 4.6提出方法之時間量測 73 第五章  結論與未來研究方向 75 5.1 結論 75 5.2 未來研究方向 76 參考文獻 78

    [1] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-law Relationships of the Internet Topology,” in Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, New York, NY, USA, 1999, pp. 251–262.
    [2] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random Networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.
    [3] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the World-Wide Web,” Nature, vol. 401, no. 6749, pp. 130–131, 9 1999.
    [4] J. Leskovec and E. Horvitz, “Planetary-scale Views on a Large Instant-messaging Network,” in Proceedings of the 17th International Conference on World Wide Web, New York, NY, USA, 2008, pp. 915–924.
    [5] R. Cazabet, M. Leguistin, and F. Amblard, “Automated Community Detection on Social Networks: Useful? Efficient? Asking the Users,” in Proceedings of the 4th International Workshop on Web Intelligence & Communities, New York, NY, USA, 2012, pp. 6:1–6:8.
    [6] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman, and J. H. Jones, “A high-resolution human contact network for infectious disease transmission,” Proc. Natl. Acad. Sci., vol. 107, no. 51, pp. 22020–22025, Dec. 2010.
    [7] J.-C. Wang, C.-C. Chiu, and J. Tang, “The Correlation Study of eWOM and Product Sales Predictions Through SNA Perspectives: An Exploratory Investigation by Taiwan’s Cellular Phone Market,” in Proceedings of the 7th International Conference on Electronic Commerce, New York, NY, USA, 2005, pp. 666–673.
    [8] R. Cross, S. P. Borgatti, and A. Parker, “Making Invisible Work Visible: Using Social Network Analysis to Support Strategic Collaboration,” Calif. Manage. Rev., vol. 44, no. 2, pp. 25–46, 2002.
    [9] N. P. Nguyen, T. N. Dinh, S. Tokala, and M. T. Thai, “Overlapping Communities in Dynamic Networks: Their Detection and Mobile Applications,” in Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, New York, NY, USA, 2011, pp. 85–96.
    [10] P. Hui, E. Yoneki, S. Y. Chan, and J. Crowcroft, “Distributed Community Detection in Delay Tolerant Networks,” in Proceedings of 2Nd ACM/IEEE International Workshop on Mobility in the Evolving Internet Architecture, New York, NY, USA, 2007, pp. 7:1–7:8.
    [11] B. H. Good, Y.-A. de Montjoye, and A. Clauset, “The performance of modularity maximization in practical contexts,” Phys. Rev. E, vol. 81, no. 4, Apr. 2010.
    [12] A. Lancichinetti and S. Fortunato, “Limits of modularity maximization in community detection,” Phys. Rev. E, vol. 84, no. 6, Dec. 2011.
    [13] C.-S. Chang, C.-Y. Hsu, J. Cheng, and D.-S. Lee, “A general probabilistic framework for detecting community structure in networks,” 2011, pp. 730–738.
    [14] E. L. Martelot and C. Hankin, “Fast Multi-Scale Community Detection based on Local Criteria within a Multi-Threaded Algorithm,” ArXiv13010955 Phys., Jan. 2013.
    [15] M. E. J. Newman, “Fast algorithm for detecting community structure in networks,” Phys. Rev. E, vol. 69, no. 6, p. 066133, 18 2004.
    [16] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large networks,” J. Stat. Mech. Theory Exp., vol. 2008, no. 10, p. P10008, Oct. 2008.
    [17] L. Ma, M. Gong, J. Liu, Q. Cai, and L. Jiao, “Multi-level learning based memetic algorithm for community detection,” Appl. Soft Comput., vol. 19, pp. 121–133, 2014.
    [18] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proc. Natl. Acad. Sci., vol. 99, no. 12, pp. 7821–7826, Jun. 2002.
    [19] E. A. Leicht and M. E. J. Newman, “Community structure in directed networks,” Phys. Rev. Lett., vol. 100, no. 11, Mar. 2008.
    [20] F. D. Malliaros and M. Vazirgiannis, “Clustering and Community Detection in Directed Networks: A Survey,” ArXiv13080971 Phys., Aug. 2013.
    [21] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal community structure,” Proc. Natl. Acad. Sci., vol. 105, no. 4, pp. 1118–1123, Jan. 2008.
    [22] “Yeh, Ying-Ling, ‘On the proximity for community detection,’ Thesis, National Taipei University Department of Statistics.” .
    [23] A. Lancichinetti and S. Fortunato, “Community detection algorithms: A comparative analysis,” Phys. Rev. E, vol. 80, no. 5, p. 056117, 30 2009.
    [24] J. Huang, H. Sun, Y. Liu, Q. Song, and T. Weninger, “Towards Online Multiresolution Community Detection in Large-Scale Networks,” PLoS ONE, vol. 6, no. 8, p. e23829, 24 2011.
    [25] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,” ACM Comput Surv, vol. 31, no. 3, pp. 264–323, 1999.
    [26] M. A. Porter, J.-P. Onnela, and P. J. Mucha, “Communities in Networks,” ArXiv09023788 Cond-Mat Physicsphysics Stat, Feb. 2009.
    [27] J. Yang and J. Leskovec, “Community-Affiliation Graph Model for Overlapping Network Community Detection,” in 2012 IEEE 12th International Conference on Data Mining (ICDM), 2012, pp. 1170–1175.
    [28] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486, no. 3–5, pp. 75–174, Feb. 2010.
    [29] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities,” Phys. Rev. E, vol. 80, no. 1, Jul. 2009.
    [30] W. W. Zachary, “An Information Flow Model for Conflict and Fission in Small Groups,” J. Anthropol. Res., vol. 33, no. 4, pp. 452–473, Spring 1977.
    [31] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, “The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations,” Behav. Ecol. Sociobiol., vol. 54, no. 4, pp. 396–405, Jun. 2003.
    [32] M. E. J. Newman, “Modularity and community structure in networks,” Proc. Natl. Acad. Sci., vol. 103, no. 23, pp. 8577–8582, Jun. 2006.
    [33] P. M. Gleiser and L. Danon, “Community structure in jazz,” Adv. Complex Syst., vol. 06, no. 04, pp. 565–573, Spring 2003.
    [34] J. Duch and A. Arenas, “Community detection in complex networks using extremal optimization,” Phys. Rev. E, vol. 72, no. 2, p. 027104, 24 2005.
    [35] R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A. Arenas, “Self-similar community structure in a network of human interactions,” Phys. Rev. E, vol. 68, no. 6, p. 065103, 17 2003.
    [36] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, Winter 1998.
    [37] “V. Batagelj, M. Zaverˇsnik, Pajek datasets, 2002, available at http://vlado.fmf.uni-lj.si/pub/networks/data/collab/geom.” .
    [38] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph Evolution: Densification and Shrinking Diameters,” ACM Trans Knowl Discov Data, vol. 1, no. 1, 2007.
    [39] M. Boguñá, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas, “Models of social networks based on social distance attachment,” Phys. Rev. E, vol. 70, no. 5, p. 056122, 22 2004.

    下載圖示
    QR CODE