研究生: |
許繼嘉 XU, Ji-Jia |
---|---|
論文名稱: |
混合動力平台機電整合系統測試驗證與最佳化能量管理 Experimental Verification for a Hybrid Powertrain Platform with Optimal Energy Management Control System |
指導教授: |
洪翊軒
Hung, Yi-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 人工蜂群演算法 、基本 規則庫 、混合動力 、綠色能源 、機電整合 |
英文關鍵詞: | Artificial bee colony algorithm, Rule based, Hybrid powertrain, Green energy, Mechatronics |
DOI URL: | http://doi.org/10.6345/NTNU202000903 |
論文種類: | 學術論文 |
相關次數: | 點閱:180 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中依過往的混合動力平台強化一種七模式的車輛混合動力平台機電整合系統,用來評估各種混合動力組合的性能測試。平台設計方面選擇了三種動力源來提供混合動力,第一個動力源是1.5kW輪轂電動馬達,第二個動力源是125c.c.汽油引擎,第三個動力源是空氣引擎,利用三電磁離合器使動力源可獨立運作或進行混合動力輸出。電子磁粉制動器模擬道路負載。Matlab/Simulink軟體接收測量的信號並執行控制命令,通過三個可控離合器的開與關狀態控制,可以執行三種單動力模式、三種雙動力模式和一種三動力模式共七種操作模式。運用混合動力平台測得引擎/馬達效率並於Matlab/Simulink軟體建置雙動力混合動力系統實驗性能分析,選定歐盟規範之ECE40 (Four Cycles)行車型態進行測試,並以人工蜂群演算法搜尋雙動力源之最佳動力分配比例,達到最小等效油耗。模擬最佳化演算法並與規則庫控制相比節能效益。研究結果顯示:第一此平台可以進行七種動力模式測試,證明了混合動力組合的高度靈活性。將來可以應用於其他動力源;第二相較於規則庫控制,仿生最佳化演算法具有較佳的節能效益,採用人工蜂群演算法於雙動力引擎/馬達系統中之能耗改善為28.5%。
This study developed a mechatronics platform for a seven-mode vehicle-oriented powertrain system. It is used for flexibly arranging various power or energy sources to be combined for various hybrid powertrains. In this study, three power sources were chosen for providing hybrid power. The first source is a 1.5kW hub motor, the second one is a 125 c.c. spark ignition engine, and the third source is an air engine, With the help of e-clutches, different power sources can be combined into hybrid powertrain or separated from it. A magnetic powder brake emulates the road load. Matlab/Simulink package receives the measured signals and sends the control commands to actuators. Through the on and off state control of three controllable e-clutches, three single-source modes, three dual-source modes, and one three-source mode, a total seven-mode can be conducted. Use the hybrid platform to measure engine/motor efficiency and Matlab/Simulink software builds a dual-power hybrid system experimental performance analysis, We selected the EU-standard ECE40 (four cycles) model for testing, and then used artificial bee colony algorithm (ABC) to search for the best power distribution ratio of the dual engine/motor power source, to reach the minimum equivalent fuel consumption. Simulated optimization algorithm was compared with rule-based for the evaluation of energy-saving benefits. The research results show that : first, the platform can test seven power modes, it proving the high flexibility of the hybrid combination. In the future, it can be applied to other power sources. Second, compared with rule-based control, the bionic optimization algorithm has better energy-saving benefits. And use with ABC the energy consumption compared with that of the rule-based control can be improved by 28.5%.
[1] A. Schafer, and D. G. Victor, “The Future Mobility of the World Population”. Transp. Res. Part A Policy Pract, vol. 34, pp. 171-205, 2000.
[2] S. Mohr, J. Wang, G. Ellem, J. Ward, and D. Giurco, “Projection of World Fossil Fuels by Country”. Fuel, vol. 141, pp. 120-135, 2015.
[3] S. Ramachandran, and U. Stimming, “Well to Wheel Analysis of Low Carbon Alternatives for Road Traffic”. Energy Environ, vol. 8, pp. 3313-3324, 2015.
[4] T. Johnson, and A. Joshi, “Review of Vehicle Engine Efficiency and Emissions”. SAE Int. J. Engines, vol. 11, pp. 1307-1330, 2018.
[5] Y. Zhou, M. Wang, H. Hao, L. Johnson, and H. Wang, “Plug-In Electric Vehicle Market Penetration and Incentives: A Global Review”. Mitig. Adapt. Strateg. Glob. Chang, vol. 20, pp. 777-795, 2015.
[6] M. Sabri, K. Danapalasingam, and M. Rahmat, “A Review on Hybrid Electric Vehicles Architecture and Energy Management Strategies. Renew. Sustain”. Energy Rev, vol. 53, pp. 1433-1442, 2016.
[7] T. R. Wkins, O. M. Gausen, and A. H. Strømman, “Environmental Impacts of Hybrid and Electric Vehicles-A Review”. Int. J. Life Cycle Assess, vol. 17, pp. 997-1014, 2012.
[8] Y. H. Hung, Y. M. Tung, and H. W. Li, “A real-time model of an automotive air propulsion system”. Appl Energy, vol. 129, pp. 287-298, 2014.
[9] R. M. Bagwe, A. Byerly, E. C. D. Santos, and Z. B. Miled, “Adaptive Rule-Based Energy Management Strategy for a Parallel HEV”. Energies, vol. 12, PP. 44-72, 2019.
[10] C. T. Chung, and Y. H. Hung, “Energy improvement and performance evaluation of a novel full hybrid electric motorcycle with power split e-CVT”, Energy Convers Manage, vol. 86, no. 7, pp. 216-225, 2014.
[11] X. I. Wang, H. W. He, F. C. Sun, and J. L. Zhang, “Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles”. Energies, vol. 8, pp. 3225-3244, 2015.
[12] C. T. Chung, and Y. H. Hung, “Performance and energy management of a novel full hybrid electric powertrain system”. Energy, vol. 89, pp. 626-636, 2015.
[13] A. Khaligh, and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art”. IEEE Trans. Veh. Technol., vol. 59, pp. 2806-2814, 2010.
[14] E. Tate, M. Harpster, and P. Savagian, “The Electrification of the automobile: From conventional hybrid, to plug-in hybrids, to extended-range electric vehicles”. SAE Int. J. Passeng. Cars-Electron. Electr. Syst. pp. 156-166, 2009.
[15] Y. Wang, X. Song, and Z. Sun, “Hybrid powertrain control with a rapid prototyping research platform. In Proceedings of the IEEE 2011 American Control Conference, San Francisco”, CA, USA, pp. 997-1002, 2011.
[16] X. Ye, Z. Jin, B. Liu, M. Chen, and Q. Lu, “Design and application of parallel hybrid vehicle simulation platform”. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, pp. 1-5, 2010.
[17] J. Timmermans, J. Mierlo, P. Lataire, F. Mulders, and Z. McCaffree, “Test platform for hybrid electric power systems: Development of a HIL test platform”. In Proceedings of the IEEE European Conference on Power Electronics and Applications, Aalborg, Denmark, pp. 1-7. 2007.
[18] S. R. Padian, F. Takemura, Y. Hayakawa, and Y. S. Kawamura, “Control performance of an air motor-can air motors replace electric motors?”. In Proceedings of the IEEE International Conference on Robotics & Automation, Detroit, MI, USA, pp. 518–524, 1999.
[19] P. Dransfield, “On the Dynamic Response Capabilities of Electric Air and Hydraulic Motor Powered Servodrives”, Proc. JHPS Int. Symp. on Fluid Power, pp. 191-196, 1989.
[20] Y. R. Hwang, Y. D. Shen, and K. K. Jen, “Fuzzy MRAC controller design for vane-type air motor systems”. J. Mech. Sci. Technol, vol. 22, pp. 497-505, 2008.
[21] K. D. Huang, and S. C.Tzeng, “Development of a hybrid pneumatic-power vehicle”. Appl. Energy, vol. 80, pp. 47-59, 2005.
[22] K. D. Huang, S. C. Tzeng, W. P. Ma, and W. C. Chang, “Hybrid pneumatic-power system which recycles exhaust gas of an internal-combustion engine”. Appl. Energy, vol. 82, pp. 117-132, 2005.
[23] K. D. Huang, S. C. Tzeng, and W. C. Chang, “Energy-saving hybrid vehicle using a pneumatic-power system”. Appl. Energy, vol. 81, pp. 1-18, 2005.
[24] Y. H. Hung, J. H. Chen, C. H. Wu, and S. Y. Chen, “System design and mechatronics of an air supply station for air-powered scooters”. Comput. Electr. vol. 54, pp. 185-194, 2016.
[25] J. K. Peng, H. W. He, and X. Rui, “Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming”. Appl. Energy, vol. 185, pp. 1633-1643, 2017.
[26] K. Dervis, “Artificial bee colony algorithm”. Scholarpedia, vol. 5(3), pp. 6915. 2005.
[27] C.H. Chang, H.Y. Chang, Y.H. Hung, C.H. Wu, and J.J. Xu. “System Designs and Experimental Assessment of a Seven-Mode Vehicle-Oriented Hybrid Powertrain Platform” Energies, vol. 13, pp. 2104, 2020.
[28] 張軒墉,“混合動力平台機電整合測試驗證與智慧型轉速控制”,國立臺灣師範大學,碩士論文,2019年。