簡易檢索 / 詳目顯示

研究生: 莊鴻榮
Chuang, Hung-Jung
論文名稱: 機器手臂在農作採收之最佳姿態分析─數據驅動法
Analysis of the Optimal Posture of a Manipulator for Agricultural Harvesting —Data Driven Method
指導教授: 陳俊達
Chen, Chun-Ta
口試委員: 陳美勇
Chen, Mei-Yong
鄭江河
Zheng, Jiang-He
鄭鴻儀
Zheng, Hong-Yi
陳俊達
Chen, Chun-Ta
口試日期: 2021/08/10
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 74
中文關鍵詞: 機器手臂逆向運動學數據驅動法可操控度
英文關鍵詞: robotic arm, inverse kinematics, data-driven method, manipulability
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101235
論文種類: 學術論文
相關次數: 點閱:130下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文「機器手臂在農作採收之最佳姿態分析─數據驅動法」旨在利用數據驅動法(Data Driven Method)取代傳統的逆向運動學算法,並結合可操控度(Manipulability)來控制機器手臂迅速達到最佳採收姿態。文中以溫室農場為假想場地,以玉女番茄為採收目標,並將玉女番茄的生長方向納入採收的參數之中,以此來制定整套採收流程。由於玉女番茄的成串果實較多,因此本文自行設計的末端採收機構具有番茄套筒,可以將目標番茄與番茄串做區隔,同時避免在剪切根莖時誤傷其他果實。最後探討在單顆及多顆番茄的情況下,實際利用採收系統對各種生長方向的番茄進行採收。結果顯示本論文所使用的數據驅動法對於採收玉女番茄之成功率以及採收效率。

    The thesis " Analysis of the Optimal Posture of a Manipulator for Agricul-tural Harvesting —Data Driven Method" aims to use Data Driven Method to replace traditional inverse kinematics algorithms and combine manipulability to control the robotic arm quickly reach the best harvest posture. In this paper, the greenhouse farm is used as the imaginary site, the cherry tomato is the harvesting target, and the growth direction of the cherry tomato is included in the harvesting parameters to plan the entire harvesting process. Since there are many bunches of fruit in cherry tomato, the self-designed end harvesting mechanism of this article has a tomato sleeve, which can separate the target tomato from the tomato bunch and avoid accidentally hurting other fruits when cutting the stem. Finally, it discusses the actual use of harvesting systems to harvest tomatoes of various growth directions in the case of single and multiple tomatoes. The results show the success rate and harvest efficiency of the data-driven method used in this thesis for the harvesting of cherry tomatoes.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的 15 1.4 研究方法 15 第二章 硬體設計 17 2.1 玉女番茄採收系統設計 17 2.2 機器手臂硬體 17 2.3 末端採收機構 18 2.3.1 D435i深度攝影機 20 2.3.2 番茄套筒 21 2.3.3 直線移動機構 22 2.3.4 末端採收機構實體 25 第三章 機器手臂可操控度分析 27 3.1 順向運動學 27 3.2 逆向運動學 31 3.3 多組解 33 3.3.1 關節角 34 3.3.2 關節角 35 3.3.3 關節角 35 3.3.4 關節角 36 3.3.5 關節角 37 3.3.6 關節角 37 3.4 Jacobian矩陣 38 3.5 可操控度 39 3.6 結論 40 第四章 最佳採收姿態模擬分析 43 4.1 基於可操控度之採收姿態模擬 43 4.2 數據驅動法 49 4.2.1 建立數據庫 50 4.2.2 選擇索引數據庫之依據 50 4.2.3 在數據庫當中選擇相符的數據 50 4.2.4 加權運算 50 4.2.5 驗證結果 52 4.3 數據驅動法結果驗證 52 4.3.1 數據庫1 52 4.3.2 數據庫2 54 4.3.3 數據庫3 56 第五章 農作物實際採收實驗 60 5.1 單一玉女番茄採收實驗 63 5.2 多顆玉女番茄採收實驗 67 第六章 結論與未來展望 72 參考文獻 73

    [1] https://www.coa.gov.tw/ws.php?id=12427
    [2] S.R.Gund,V.P.Bhope, ” A Review on Agricultural Robots”, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), July 2015, 3089-3093.
    [3] Zhao, L. Gong, Y. Huang, C. Liu, ” A review of key techniques of vision-based control for harvesting robot”, Computers and Electronics in Agriculture 127, 2016 311–323
    [4] S. Hayashi, K. Ganno, Y. Ishii, I. Tanaka, ”Robotic harvesting system for eggplants” , Jpn. Agric. Res. Q. 2002, 36, 163–168.
    [5] D. Zhao, J. Lu, W. Ji, Y. Zhang, Y. Chen, “Design and control of an apple harvesting robot” , Biosystems Engineering, 2011, 112-122.
    [6] Hiroaki Yaguchi, Kotaro Nagahama, Takaomi Hasegawa and Masayuki Inaba, “Development of An Autonomous Tomato Harvesting Robot with Rotational Plucking Gripper”, IEEE International Conference on Intelligent Robots and Systems,October 2016, 652-657
    [7] Shigehiko Hayashi, Kenta Shigematsu, Satoshi Yamamoto, Ken Kobayashi, Yasushi Kohno, Junzo Kamata, Mitsutaka Kurita, “Evaluation of a strawberry-harvesting robot in a field test”, Biosystems Engineering, 2010, 160-171
    [8] E.J. Van Henten, J. Hemming, J.G. Kornet, J. Bontsema, “An Autonomous Robot for Harvesting Cucumbers in Greenhouses” , Institute of Agricultural and Environmental Engineering (IMAG B.V.), P.O. Box 43, 2002, 241-258
    [9] Tsuneo Yoshikawa, “Manipulability of Robotic Mechanisms” , The International Journal of Robotics Research, 1985
    [10] Fei Chen, Mario Selvaggio, Darwin G. Caldwell, “Dexterous Grasping by Manipulability Selection for Mobile Manipulator With Visual Guidancet”, IEEE Transactions on Industrial Informatics, February 2019, 1202-1210
    [11] Nikolaus Vahrenkamp, Tamim Asfour, Giorgio Metta, Giulio Sandini and Rudiger Dillmann, “Manipulability Analysis”, IEEE-RAS International Conference on Humanoid Robots, 2012
    [12] Dewi, T., Nurmaini, S., Risma, P., Oktarina, Y., & Roriz, M., “Inverse kinematic analysis of 4 DOF pick and place arm robot manipulator using fuzzy logic controller.”, International Journal of Electrical & Computer Engineering, April 2020, 1376-1386
    [13] Ahmed R. J. Almusawi, L. Canan Dülger and Sadettin Kapucu, ” A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)”, Computational Intelligence and Neuroscience Volume 17, August 2016
    [14] Corey Goldfeder·, Peter K. Allen, ” Data-driven grasping”, Auton. Robot, 28 March 2011, 1-20
    [15] Toru Yamamoto,Kenji Takao, and Takaaki Yamada, ” Design of a Data-Driven PID Controller”, IEEE Transactions on control systems technology vol.17, January 2009
    [16] Xilang Zhang, Qian Guo, Yunfeng Xu, Pingping Li, Cheng Chen, Shuo Wu, ” Mechanical Testing of Tomato Plant Stem in Relation to Structural Composition”, National Academy of Agricultural Sciences, 21 January 2016
    [17] T.Milligan, ” More applications of Euler rotation angles”, IEEE Antennas and Propagation Magazine, August 1999,78-83
    [18] Tarun Pratap Singh, Dr. P. Suresh, Dr. Swet Chandan, ”Forward and Inverse Kinematic Analysis of Robotic Manipulators”, International Research Journal of Engineering and Technology, February 2019, 1459-1469

    下載圖示
    QR CODE