研究生: |
陳新颺 SHIN-YANG CHEN |
---|---|
論文名稱: |
電腦麻將程式ThousandWind的設計與實作 The Design and Implementation of the Mahjong Program ThousandWind |
指導教授: | 林順喜 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 人工智慧 、電腦麻將 、不完全資訊 |
論文種類: | 學術論文 |
相關次數: | 點閱:281 下載:69 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年在科技不斷進步之下,人工智慧電腦對局程式也不斷有新的方法或成果出現,技術方面也越來越成熟,但相對於明確資訊的對局遊戲,不明確且帶有機率性的對局遊戲程式一直以來都不容易跟人類玩家抗衡,相關算法以及論文討論也相對上比較少量,因此在這篇論文之中將會討論到關於電腦麻將程式的人工智慧開發。
這本篇論文中,將會說明電腦麻將程式ThousandWind裡面所使用到的各類算法,包含如何對牌型做評分、利用遊戲過程的統計結果來做動態的權重調整、避免放槍的新策略、以及過去論文沒有提到的關於追求牌分的方法,像是一些牌型比對的策略,以及藉由模擬結果來計算是否該追求更大的牌分。
目前該程式也曾獲得TAAI 2012電腦對局比賽的銀牌,以及TCGA 2013與ICGA 2013電腦對局比賽的銀牌。也期望論文中所提到的各種方法可以對往後不僅是電腦麻將程式的開發,甚至是可以帶給其他不明確資訊且帶機率性遊戲一些啟發。
Because of the advances in science and technology, computer games researchers continue to have new methods and achievements in recent years. Technology has also become increasingly mature. But relative to the perfect information games, programs that play imperfect information games have never been easier to compete with human players. There is less paper dealing with the related algorithms. In this thesis, we will discuss the development of computer AI program for playing mahjong.
This thesis will explain all the algorithms which have been used in our mahjong program “ThousandWind”. These algorithms include how to evaluate the scores about the hand patterns, how to dynamically adjust the cards' weights during the game process by using the statistical results, how to find new strategies to avoid letting others win, and how to find new ways (e.g. using the hand patterns matching strategy and simulation results) to win more scores.
Our program “ThousandWind” has won the silver medal of TAAI 2012 computer game competitions, and the silver medals of TCGA 2013 and ICGA 2013 computer game competitions. We expect that the methods presented in this thesis cannot only be used for the development of computer mahjong programs, but also be used for the imperfect information games with probability in the future.
[1]莊凱閔、陳玥汝,電腦麻將演算法及相關議題之研究。2007,第十二屆人工智慧與應用研討會。
[2]林典餘,麻將人工智慧之研究。2008,國立交通大學研究所碩士論文。
[3]梁聖彥,朱德清,林順喜,機率性對局遊戲的電腦解法研究。2000,第五屆人工智慧與應用研討會。
[4]張瓈文,「德州撲克」不完全資訊賽局之研究。2006,國立臺灣資訊工程研究所碩士論文。
[5]葉俊廷,非完全資訊賽局-蜜月橋牌之研究。2009,國立臺灣資訊工程研究所碩士論文。
[6]唐心皓,吹牛骰子之人工智慧改良。2011,國立臺灣資訊工程研究所碩士論文。
[7]勞永祥,電腦暗棋之人工智慧改良。2011,國立臺灣資訊工程研究所碩士論文。
[8]黃士傑,New Heuristics for Monte-Carlo Tree Search Applied to the Game of Go。2011,國立臺灣資訊工程研究所博士論文。
[9]Ian Frank,Computer Bridge Survey.1997, Electrotechnical Laboratory, Machine Inference Group, Umezono 1-1-4, Tsukuba. Ibaraki, JAPAN 305。
[10]Ian Frank,David Basin,Search in games with incomplete information: a case study using Bridge card play.1998, Complex Games Lab, Electrotechnical Laboratory, Umezono 1-1-4, Tsukuba,Ibaraki, JAPAN 305。
[11]M. Ginsberg, How computers will play bridge,The Bridge World.1995。
[12]Sylvain Gelly and David Silver.Combining online and offline knowledge in UCT.2007,In international Conference on Machine Learning。
[13]Sylvain Gelly and Yizao Wang.Exploration exploitation in Go:UCT for Monte-Carlo Go.2006, University of Paris-Sud, Orsay, France。
[14]Daniel Hellsson,A MahJong-Playing Program. 2000, LUND INSTITUTE OF TECHNOLOGY. Lund University。
[15]Stephen J. J. Smith,Dana Nau,Tom Throop,Computer bridge: A big win for AI planning.1998, AI Magazine, 19(2):93–105。
[16]Yoshimasa Tsuruoka, Daisaku Yokoyama, Takashi Chikayama,GAME-TREE SEARCH ALGORITHM BASED ON REALIZATION PROBABILITY. 2002, ICGA Journal。
[17]Sheldon M. Ross, Introduction to Probability Models, 2010。
[18]Noam Nisan,Tim Roughgarden,Eva Tardos,Vijay V. Vazirani, Algorithmic Game Theory, 2007。