研究生: |
黃粲絜 Huang, Tsan-Chieh |
---|---|
論文名稱: |
應用三維列印在生活科技課程對科技創造力的影響 Effect of 3D Printing in Living Technology Course on Technological Creativity |
指導教授: |
林育慈
Lin, Yu-Tzu |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 科技創造力 、3D printing 、設計思考 、動手實作 |
英文關鍵詞: | technological creativity, 3D printing, design thinking, hands-on learning |
DOI URL: | https://doi.org/10.6345/NTNU202203370 |
論文種類: | 學術論文 |
相關次數: | 點閱:165 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的生活科技課程大多是給予固定的操作方式進行授課,但如此施為學生將失去設計過程中的思考歷程,按部就班的製作學習亦無法真正學習解決真實生活問題的能力。研究顯示有效的生活科技課程教學方式應採用主題或專題製作的方式,建立一個供學生實作的環境,學生能基於知識原理,並根據日常生活的需求進行思考,讓學生從探索、解決問題、模擬實證、發表、討論、腦力激盪等過程中發展多種構想與解決方法。而這些能力的培養需要引介更多動手實作與科技的使用,一個好的使用工具能夠使得學生整個設計的流程更加的流暢與發揮空間,而三維印表機則為方便的科技產品輔助設計流程的進行。
本研究設計基於設計歷程之生活科技教學活動,並以切合現實生活作為主題,透過比較利用三維列印輔助教學之實驗組與利用智高積木輔助教學之控制組兩者之差異,研究對象為新北市立立某高中10年級生,探討三維列印輔助生活科技教學如何影響學生之學習,歸納資料分析結果如下:
1. 透過三維列印輔助教學與透過智高積木輔助教學對於學生的科技創造力沒有顯著的差異,但是建模的過程與三維列印可以反覆印製的功能讓學生具備良好的觀察環境並能不斷嘗試錯誤,整合出更具獨創且有價值的作品,展現出學生產品科技創造性的變通力、敏覺力與精進力。
2. 三維列印輔助生活科技學習對學生的科技興趣與學習階層產生良好的態度並且對學生動手實作、工具的使用、創造的歷程及自身的問題解決能力顯示較高的自我效能。
3. 結合設計思考的過程引導學生透過三維列印進行實踐學習對學生科技產品的創造是有幫助的,而齒輪模擬軟體的建模及三維列印反覆印製的過程中亦可以促進學生設計思考的精進與齒輪機構知識的建立,比起透過智高積木輔助教學更多了瞭解齒輪機構知識及測試並改進的機會。
In most traditional Living Technology courses, teaching materials are pre-designed and pre-prepared for use of some specific teaching contents, it falls short of providing working spaces to employ design thinking, which is a core process for developing creativity. Research on creativity and design thinking suggested that situated and hands-on experiences are essential for students fostering their creativity and design thinking skills. Exploration, problem solving, simulation, discussion, and brainstorming are some of the specific processes frequently being taken for facilitating students in achieving substantial gains on creativity and design thinking skills, and current development of computer technologies have tremendously advanced these creative working processes. For Mechanical Design, which is a unit of living technology course, 3D-pringing is among one of the computer technologies that could provide more complicated, approach-to-real creative working spaces.
This study intended to study the design and development of 3D-printing-based instructional strategy for the Mechanical Design of Living Technology course, and assumed to be beneficial for student’s technological creativity. The instructional strategy was designed based on the design thinking process, which guided students to conduct creative design and production. A quasi-experiment was conducted to explore the effects of 3D-printing-faciliated gear set design. The experimental group used 3D modelling and printing to assist creative design, whereas the control group used Lego bricks. The results show that although no difference on students’ technological creativity was found, the experimental group performed significantly better on designing and producing technological artifacts in terms of flexibility, sensitivity, and ability of elaboration. Moreover, students in 3D-printing group exhibited significantly better technological attitude in terms of interest and learning, and also revealed higher self-efficacies on hands-on operation, tool utilization, creative process, and problem-solving.
With iterated gear modelling/3D-pringing practices, students in the experimental group gain more on design thinking skills and technological domain knowledge, which affect the creativity of their technological artifacts. Therefore, in compare with traditional Lego bricks manipulations, guiding students employing 3D-printing-faciliated design advance more on the creativity of their technological production.
毛連塭、郭有遹、陳龍安、林幸台(2000)。創造力研究。台北市:心理。
王意蘭, 吳致娟, 汪殿杰, & 巫鍵志. (2014). 強調動手實作的科技教育-以臺北市立大同高中為例. 中等教育.
朱益賢. (2006). 從科技素養到科技創造力. 生活科技教育, 39(8), 1-2.
朱耀明. (2011). 不論是 [手工],[工藝], 和 [生活科技] 課程,[動手做] 成為生活科技課程的最重要活動, 也是主要的學習策略, 也都期望在課程教學中, 學生透過動手做出不同主題的 [具體] 產出. 在這樣的課程特徵與習性下, 形塑出 [生活科技就是 [動手做]] 的連結與印象. 因此, 以 [動手做] 為主要教學策略的 [生活科技] 課程, 教學者應了解 [動手做] 的 [學習] 意涵或機制, 以助釐清 [動. 科技教育的再思維, 32.
吳怡瑄、葉玉珠(2003)。主題統整教學、年級、父母社經地位與國小學童科技創造力之關係。師大學報,48 (2),239-260。
吳彥良, & 劉育東. (2009). 一個整合立體動畫與立體虛擬實境之空間視覺化系統 (Doctoral dissertation).
吳曜安. (2013). 運用創造性問題解決法融入創意競賽以培養國中生科技創造力之研究. 淡江大學教育科技學系碩士在職專班學位論文, 1-295.
李大偉, & 張玉山. (2006). 不同的範例展示及實作經驗對國中生技術創造力的影響.
李堅萍(2006)。培育科技創造力應重視實作技能的教學與自我效能的激發。生活科技教育,39(8), 21-28。
李隆盛(1993)。橫看成嶺側成峰:技學面面觀。技職教育雙月刊,13,18-20。
周曙華 & 熊興福。 (2005)。設計思維的兩重性。包裝工程, 26(6),217-219。
林坤誼, 游光昭, & 洪國峰. (2011). 操作技能對思考與實作表現影響之研究. 課程與教學, 14(4), 161-185.
林偉文(2011)。創意教學與創造力的培育-以「設計思考」為例。教育資料與研究雙月刊,100,53-74。
張玉山 & 楊雅茹 (2014)。STEM 教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊,1(1):2-17。
張玉山,李大偉,游光昭, & 林雅玲(2009)。不同範例展示及實作經驗對國中生科技創造力的影響. 教育科學研究期刊, 54(4), 1-27。
張玉山,楊雅茹(2014)。STEM教學設計之探討:以液壓手臂單元為例.科技與人力教育季刊. 2014,1(1),2-17,2。
教育部( 2001)。國民中小學九年一貫課程暫行綱要. 。台北:教育部。
韓豐年, 游光昭, 林坤誼, & 徐毅穎. (2005). 國中學生科技態度量表之發展.
鐘建坪. (2010). 引導式建模探究教學架構初探. 科學教育, (328), 2-18.
Akar, E. (2005). Effectiveness of 5e learning cycle model on students’ understanding of acid-base concepts (Doctoral dissertation, Middle East Technical University).Alto, CA: Stanford University.
Al Majali, S., & Diab, Y. (2013). THE IMPACT OF (5ES) LEARNING CYCLE ON THE OUTCOME AND THE DEVELOPMENT OF CREATIVE THINKING AMONG STUDENTS OF SEVENTH GRADE IN ARABIC LANGUAGE COURSE IN ALQASER/KARAK BRIGADE. International Journal of Academic Research, 5(5).
Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in organizational behavior, 10(1), 123-167.
Amabile, T. M. (1996). Creativity in context: Update to" the social psychology of creativity.". Westview press.
Archer, J., & Scevak, J. J. (1998). Enhancing students’ motivation to learn: Achievement goals in university classrooms. Educational Psychology, 18(2), 205-223.
Astana Economic Forum (2016). Concept Note for Workshop on “Bridging the digital divide between people and countries”. Retrieved: http://workspace.unpan.org/sites/Internet/Documents/UNPAN96239.pdf
Balci, S., Cakiroglu, J., & Tekkaya, C. (2006). Engagement, exploration, explanation, extension, and evaluation (5E) learning cycle and conceptual change text as learning tools. Biochemistry and Molecular Biology Education,34(3), 199-203.
Boulter, C. J. (2000). Language, models and modelling in the primary science classroom. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 289-306). Dordrecht, The Netherlands: Kluwer.
Brown, T. (2008). Design thinking. Harvard business review, 86(6), 84.
Brown, T. (2009). Change by design.
Brown, T., & Wyatt, J. (2010). Design thinking for social innovation. Development Outreach, 12(1), 29-43.
Buckley, B. C., & Boulter, C. J. (2000). Investigating the Role of Representations and Expressed Models in Building Mental Models. In J. K. Gilbert and C.J. Boulter (eds.), Developing Models in Science Education (pp.119-135.) Netherlands: Kluwer Academic Publishers.
Bybee, B. R. W. (2010). Advancing STEM Education : A 2020 Vision. Technology and Engineering Teacher, (September), 30-36.
Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, CO: BSCS, 5, 88-98.
Canessa, E., Fonda, C., Zennaro, M., & DEADLINE, N. (2013). Low-cost 3D printing for science, education and sustainable development. Low-Cost 3D Printing, 11.
Csikszentmihalyi, M. (1988). Society, culture, and person:A systems view of creativity. In R. J. Sternberg (Ed.), The nature of creativity (pp. 325-339). New York:Cambridge University Press.
Culén, A. L. (2015). HCI Education: Innovation, Creativity and Design Thinking. In 2015 International Conferences on Advances in Computer-Human Interactions (pp. 125-130).
DeNisco, B. A. (2012). Using Technology to Make (Almost) Anything! District Administration, (December), 34-38.
Dewey, J. (1986, September). Experience and education. In The Educational Forum (Vol. 50, No. 3, pp. 241-252). Taylor & Francis Group.
Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120.
Elkind, D., Deblinger, J., & Adler, D. (1970). Motivation and creativity: The context effect. American Educational Research Journal, 7(3), 351-357.
Feldman, M. P., & Audretsch, D. B. (1999). Innovation in cities:: Science-based diversity, specialization and localized competition. European economic review, 43(2), 409-429.
Gilbert, J. K. (2004). Models and modeling : routes to more authentic science education. International Journal of Science, & Math Education, 2, 115-130.
Goldman, S., & Roth, B. (2010). Destination, imagination & the fires within: Designthinking in a middle school classroom. Retrieved from http://stanford.edu/dept /SUSE /taking-design /proposals/Destination_Imagination _the_Fire_Within.pdf
Greca, I. M., & Moreira, M. A. (2002). Mental, physical, and mathematical models in the teaching and learning of physics. Science Education, 85(6), 106-121.
Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041.
Harrison, A. G., & Treagust, D. F. (1998). Modelling in science lessons: Are there better ways to learn with models? School Science and Mathematics, 98, 420-429.
Hasso Plattner Institute of Design at Stanford ( 2007). Design thinking process. Palo Alto, Ca: Stanford University
Hawryszkiewycz, I., Pradhan, S., & Agarwal, R. (2015). Design thinking as a framework for fostering creativity in management and information systems teaching programs In Proceedings of Pacific Asia Conference on Information Systems, 2015, N0.97.
Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403.
Hu, W., Wu, B., Jia, X., Yi, X., Duan, C., Meyer, W., & Kaufman, J. C. (2013). Increasing students' scientific creativity: The “learn to think” intervention program. The Journal of Creative Behavior, 47(1), 3-21.
Huang, T. C., & Lin, C. Y. (2017). From 3D modeling to 3D printing: Development of a differentiated spatial ability teaching model. Telematics and Informatics, 34(2), 604-613.
Iscan, C. D., Bayraktar, A., & Gokce, E. (2015). Pre-service Teachers’ Teaching Applications Based on 5E Learning Cycle. Anthropologist, 20(1-2), 319-329.
Jeffrey, B. & Woods, P. (2003). The creative school: a framework for success, quality and effectiveness. London: Routledge/Falmer.
Katanski, D. (2013). Bridging the Creativity and STEM Crisis. 2013 ASQ Advancing the STEM Agenda Conference, Section 4-2.
Katsioloudis, P., Jovanovic, V., & Jones, M. (2014). A comparative analysis of spatial visualization ability and drafting models for industrial and technology education students.
Knoll , M. (1997). The project method: Its vocational education origin and international development. Journal of Industrial Teacher Education , 34(3), 59-80.
Kostakis, V., Niaros, V., & Giotitsas, C. (2015). Open source 3D printing as a means of learning: An educational experiment in two high schools in Greece. Telematics and informatics, 32(1), 118-128.
Kroll, E., & Artzi, D. (2011). Enhancing aerospace engineering students' learning with 3D printing wind-tunnel models. Rapid Prototyping Journal, 17(5), 393-402.
Lawson, A. E. (1995). Science teaching and the development of thinking. wadsworth publishing company.
Lewis , T. (1999). Research in technology education: Some areas of need. Journal of Technology Education , 10 (2), 41-56
Lewis, L. H., & Williams, C. J. (1994). Experiential learning: Past and present. New directions for adult and continuing education, 1994(62), 5-16.
Lubart, T. I., & Sternberg, R. J. (1995). An investment approach to creativity: Theory and data. The creative cognition approach, 269-302.
Mayer, R. E. (1999). Fifty years of creativity research. In R. J. Sternberg (Ed.), Handbook of Creativity (pp. 449-460). New York: Cambridge.
Michael, K. Y. (2001). The effect of a computer simulation activity versus a hands-on activity on product creativity in technology education. Journal of Techonolgy Education, 13(1). Retrieved from: http://scholar.lib.vt.edu/ejournals/JTE/v13n1/michael.html
NACCCE (1999). All our futures: creativity, culture and education. London: DfEE.
National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. (2011). Toward precision medicine: Building a knowledge network for biomedical research and a new taxonomy of disease. National Academies Press (US).
Papaevripidou, M., Constantinou, C. P., & Zacharia, Z. C. (2007). Modeling complex marine ecosystems: An investigation of two teaching approaches with fifth graders. Journal of Computer Assisted Learning, 23, 145-157.
Penner, D. E. (2001). Cognition, computers, and synthetic science: Building knowledge and meaning through modeling. Review of Research in Education, 25, 1-36.
Perkins, D. N. (1988). 11 Creativity and the quest for mechanism. The psychology of human thought, 309.
Rasinen, A. (2003). An analysis of the technology education curriculum of six countries.
Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H. U., & Giesel, F. L. (2010). 3D printing based on imaging data: review of medical applications. International journal of computer assisted radiology and surgery, 5(4), 335-341.
Retrieved from http://www.iste.org/docs/pdfs/nets-s-standards.pdf?sfvrsn=2
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92-96.
Ryhammar, L., & Brolin, C. (1999). Creativity research: Historical considerations and main lines of development. Scandinavian journal of educational research, 43(3), 259-273.
Schon, D. A. (1967). Technology and change: The new Heraclitus. Seymour Lawrence.
Schubert, C., Van Langeveld, M. C., & Donoso, L. A. (2013). Innovations in 3D printing: a 3D overview from optics to organs. British Journal of Ophthalmology, bjophthalmol-2013.
Scott, G., Leritz, L. E., & Mumford, M. D. (2004). The effectiveness of creativity training: A quantitative review. Creativity Research Journal, 16(4), 361-388.
Shaheen, N., Alam, T., Mushtaq, M., & Bukhari, M. A. (2015). Effects of Inquiry Based Learning on the Performance of students’ At Elementary Level in Rawalpindi City: An Experimental Study. Academic Research International, 6(2), 382.
Snyder, M. S. (2004). Defining the Role of Technology Education by Its Heart and Its Heritage. Journal of Technology Studies, 30(1), 19-27.
Stein, M. I. (1953). Creativity and culture. Journal of Psychology, 36, 31–322.
Sternberg, R. J. (2006). The nature of creativity. Creativity Research Journal, 18(1), 87-98. DOI: 10.1207/s15326934crj1801_10
Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American psychologist, 51(7), 677.
Stiles, J. (2015). Exemplary STEM Programs: Designs for Success. Yager, RE and Brunkhorst, H., eds. Arlington, Virginia USA: NSTA Press,(National Science Teachers Association) 2014. 461 pages. K-12 STEM Education, 1(2), 111-112.
Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research (J-PEER), 2(1), 4.
Technology for All Americans Project, & International Technology Education Association. (2000). Standards for technological literacy: Content for the study of technology. International Technology Education Association.
Torrance, E. P. (1987). Teaching for creativity. In Isaksen, S. G. (Ed.), Frontiers of creativity research: Beyond the basics (pp. 189-215). Buffalo, NY: Bearly Limited
Torrance, E. P.(1993). The beyonders in a thirty year longitudinal study of creative achievement. Roeper Review, 15, 131-135.training: A quantitative review. Creativity Research Journal, 16(4), 361-388.
Treffinger, D. J., & Isaksen, S. G. (2005). Creative problem solving: The history, development, and implications for gifted education and talent development. Gifted Child Quarterly, 49(4), 342-353.
Turgut, M., & Uygan, C. (2014). Spatial ability training for undergraduate mathematics education students: designing tasks with SketchUp. The Electronic Journal of Mathematics and Technology, 8(1), 53-65.
Van Joolingen, W. R., De Jong, T., & Dimitrakopoulou, A. (2007). Issues in computer supported inquiry learning in science. Journal of Computer Assisted Learning, 23(2), 111-119.
Walia, P. (2012). Effect of 5E instructional model on mathematical creativity of students. Golden Research Thoughts, 1(10), 1-4.
Wölbling, A., Krämer, K., Buss, C. N., Dribbisch, K., LoBue, P., & Taherivand, A. (2012). Design Thinking: An Innovative Concept for Developing User-Centered Software. In Software for People (pp. 121-136). Springer Berlin Heidelberg.
Wright, T., & Lauda, D. P. (1993). Technology education-A position statement. The Technology Teacher, 52(4), 3-5.
Xie, Y., & Reider, D. (2014). Integration of innovative technologies for enhancing students’ motivation for science learning and career. Journal of Science Education and Technology, 23(3), 370-380.
Yang, Y. T. C. (2015). Virtual CEOs: A blended approach to digital gaming for enhancing higher order thinking and academic achievement among vocational high school students. Computers & Education, 81, 281-295.