簡易檢索 / 詳目顯示

研究生: 蔡欣安
Tsai, Hsin-An
論文名稱: Bipyridine衍生物對鹵化鉛鈣鈦礦表面修飾及光伏性能的影響
Influence of Bipyridine Derivatives on Surface Modification of Lead Halide Perovskite and Photovoltaic Performance
指導教授: 李君婷
Li, Chun-Ting
口試委員: 李君婷
Li, Chun-Ting
林建村
Lin, Jiann-T'suen
趙宇強
Chao, Yu-Chiang
口試日期: 2023/06/20
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 65
中文關鍵詞: 缺陷鈍化2,9-二甲基-1,10-菲囉啉鹵化鉛鈣鈦礦太陽能電池
英文關鍵詞: Defect passivation, 2,9-Dimethyl-1,10-phenanthroline, Lead halide perovskite, Solar cells
DOI URL: http://doi.org/10.6345/NTNU202300787
論文種類: 學術論文
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將2,2’-bipyridine (Bpy)、1,10-phenanthroline (Phen) 和2,9-dimethyl-1,10-phenanthroline (DMPhen) 作為鈍化劑加入鈣鈦礦太陽能電池中的鈣鈦礦層。鈍化劑可以藉由修復薄膜中的缺陷/孔洞與阻擋晶格裂解,建立鈣鈦礦晶粒之間的快速電荷轉移通路、抑制電荷復合、延長載流子壽命。鈍化劑使用三種方式加入鈣鈦礦太陽能電池中:(1) 鈍化劑與鈣鈦礦前驅物一同溶解於溶劑中;(2) 將含有鈍化劑的反溶劑滴入鈣鈦礦薄膜進行再結晶;(3) 旋塗一層鈍化劑薄膜覆蓋至鈣鈦礦薄膜上。根據光電轉換效率結果,發現旋塗一層鈍化劑薄膜能更有效的填充鈣鈦礦晶粒間的缺陷。與Bpy修飾的薄膜相比,由結構更剛性的Phen和DMPhen所鈍化的薄膜更能抑制PbI2和δ-FAPbI3的形成,並具有優良的導電性與更長的電子壽命。藉由鈍化劑的立體障礙提升能降低胺類化合物的聚集,從而減少介面電荷累積。與未修飾的薄膜相比(9.31%),添加DMPhen (2.5 mg mL-1於對二氯苯) 可顯著提升其元件的光電轉換效率至14.65%,歸因於DMPhen與鉛的配位較強,且能更好地抑制鈣鈦礦去質子化。進一步將DMPhen的濃度從2.5 mg mL-1調整為1.5 mg mL-1後,元件之填充因子可以從0.57增加到0.73,使光電轉換效率從11.16%提高到14.86%,填充因子從0.57增加到0.73。

    Three aromatic amines, i.e., 2,2’-bipyridine (Bpy), 1,10-phenanthroline (Phen), and 2,9-dimethyl-1,10-phenanthroline (DMPhen), were introduced as the surfactant of light-harvesting perovskite layer, Cs0.05(FA0.94MA0.06)0.95]1.17, in perovskite solar cell (PSCs). Aromatic amines are beneficial to charge-transfer among perovskite grains, suppressing charge recombination and extending carrier lifetime, due to reduced film defects/pin-holes and retarded crystal decomposition. Three strategies were adopted to increase the interactions between a surfactant and perovskite film: (1) mixing of the perovskite precursors with a surfactant in solution; (2) using anti-solvents containing a surfactant to improve the crystallinity of perovskite film; (3) layer-by-layer spin-coating a perovskite film covered by a surfactant film. Layer-by-layer spin-coating improved the contact among perovskite grains. Compare to the Bpy-passivated film, the surfactant having a more rigid phenanthroline segment (Phen and DMPhen) enhanced the film conductivity, reduced the formation of PbI2 and δ-FAPbI3, and extended the electron lifetime of the photoexcited state. More sterically congested hindrance surfactant had less molecular aggregations and thereby reduced the interfacial charge accumulation. Compared to a reference cell (9.31%), the addition of rigid DMPhen (2.5 mg mL-1 in chlorobenzene) greatly improved the cell performance (14.65%) owing to the stronger lead-DMPhen coordination and the better suppression of deprotonation the ammonium in perovskite. After adjusting the concentration of DMPhen from 2.5 mg mL-1 to 1.5 mg mL-1, the cell performance enhanced from 11.16% to 14.86% due to the FF increased from 0.57 to 0.73.

    致謝 i 中文摘要 ii Abstract iii Table of Contents iv List of Tables v List of Figures vi Nonmenclatures ix Chapter 1 Introduction 1 1-1 Solar Energy and solar cell 1 1-2 Problems of Perovskite material 9 1-3 Motivation 18 Chapter 2 Experimental Section 20 2-1 Materials 20 2-2 Perovskite solar cell device 20 2-3 Amine passivators 22 2-4 Instruments and Analyses 23 Chapter 3 Results and Discussion 24 3-1 Fabrication process for Cs0.05[(FA0.86MA0.14)]0.95Pb(I0.86Br0.14)3 24 3-2 Analysis technique and surface passivation 29 3-3 Fabrication process for Cs0.05(FA0.94MA0.06)0.95[Pb(I2.85Br0.15)]1.17 + 30% MACl 33 3-4 Crystal structure and Morphology 39 3-5 Optical properties 46 3-6 Interfacial charge transfer 49 3-7 Optimization by surfactant concentration 51 Chapter 4 Conclusions 55 References 56 Appendix A Curriculum vitae 64

    1. Yuge, N.; Abe, M.; Hanazawa, K.; Baba, H.; Nakamura, N.; Kato, Y.; Sakaguchi, Y.; Hiwasa, S.; Aratani, F., Purification of metallurgical-grade silicon up to solar grade. Progress in Photovoltaics: Research and Applications 2001, 9 (3), 203-209.
    2. Zheng, S.-s.; Safarian, J.; Seok, S.; Kim, S.; Merete, T.; Luo, X.-t., Elimination of phosphorus vaporizing from molten silicon at finite reduced pressure. Transactions of nonferrous metals society of china 2011, 21 (3), 697-702.
    3. Khattak, C. P.; Schmid, F.; Joyce, D. B.; Smelik, E. A.; Wilkinson, M. A., Production of solar-grade silicon by refining of liquid metallurgical-grade silicon. AIP Conference Proceedings 1999, 462 (1), 731-736.
    4. Marques, F. C.; Cortes, A. D. S.; Mei, P. R., Solar cells fabricated in upgraded metallurgical silicon, obtained through vacuum degassing and czochralski growth. Silicon 2019, 11 (1), 77-83.
    5. Removal of impurities from metallurgical grade silicon by electron beam melting. Journal of Semiconductors 2011, 32 (3), 033003.
    6. Siva Reddy, V.; Kaushik, S. C.; Ranjan, K. R.; Tyagi, S. K., State-of-the-art of solar thermal power plants—a review. Renewable and Sustainable Energy Reviews 2013, 27, 258-273.
    7. Luo, D.-w.; Liu, N.; Lu, Y.-p.; Zhang, G.-l.; Li, T.-j., Removal of boron from metallurgical grade silicon by electromagnetic induction slag melting. Transactions of Nonferrous Metals Society of China 2011, 21 (5), 1178-1184.
    8. Johnston, M. D.; Barati, M., Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications. Solar Energy Materials and Solar Cells 2010, 94 (12), 2085-2090.
    9. Li, Y.; Wu, J.; Ma, W.; Yang, B., Boron removal from metallurgical grade silicon using a refining technique of calcium silicate molten slag containing potassium carbonate. Silicon 2015, 7 (3), 247-252.
    10. Pires, J. C. S.; Otubo, J.; Braga, A. F. B.; Mei, P. R., The purification of metallurgical grade silicon by electron beam melting. Journal of Materials Processing Technology 2005, 169 (1), 16-20.
    11. Santos, I. C.; Gonçalves, A. P.; Santos, C. S.; Almeida, M.; Afonso, M. H.; Cruz, M. J., Purification of metallurgical grade silicon by acid leaching. Hydrometallurgy 1990, 23 (2), 237-246.
    12. Søiland, A.-K., Silicon for solar cells. 2005, Department of Materials Technology, Norwegian University of Science and Technology.
    13. Chigondo, F., From metallurgical-grade to solar-grade silicon: an overview. Silicon 2018, 10 (3), 789-798.
    14. Hossain, M. J.; Gregory, G.; Schneller, E. J.; Gabor, A. M.; Blum, A. L.; Yang, Z.; Sulas, D.; Johnston, S.; Davis, K. O., A comprehensive methodology to evaluate losses and process variations in silicon solar cell manufacturing. IEEE Journal of Photovoltaics 2019, 9 (5), 1350-1359.
    15. Pearce, J.; Lau, A., Net energy analysis for sustainable energy production from silicon based solar cells. 2002, 181-186.
    16. Saga, T., Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Materials 2010, 2 (3), 96-102.
    17. Jaegermann, W.; Klein, A.; Mayer, T., Interface engineering of inorganic thin-film solar cells-materials-science challenges for advanced physical concepts. Advanced Materials 2009, 21 (42), 4196-4206.
    18. Miles, R. W.; Zoppi, G.; Forbes, I., Inorganic photovoltaic cells. Materials Today 2007, 10 (11), 20-27.
    19. Britt, J.; Ferekides, C., Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters 1993, 62 (22), 2851-2852.
    20. Romeo, A.; Artegiani, E., CdTe-based thin film solar cells: past, present and future. Energies 2021, 14 (6), 1684.
    21. Ramanujam, J.; Singh, U. P., Copper indium gallium selenide based solar cells-a review. Energy & Environmental Science 2017, 10 (6), 1306-1319.
    22. Ahn, S.; Kim, C.; Yun, J. H.; Gwak, J.; Jeong, S.; Ryu, B.-H.; Yoon, K., CuInSe2 (CIS) thin film solar cells by direct coating and selenization of solution precursors. The Journal of Physical Chemistry C 2010, 114 (17), 8108-8113.
    23. Shamim, S. M.; Islam, S.; Huq, F.; Jobair, M., Design, performance analysis and efficiency optimization of copper indium gallium selenide (CIGs) solar cell. European Scientific Journal 2015, 11.
    24. Kajal, P.; Ghosh, K.; Powar, S., Manufacturing techniques of perovskite solar cells. In Applications of Solar Energy, Tyagi, H.; Agarwal, A. K.; Chakraborty, P. R.; Powar, S., Eds. Springer Singapore: Singapore, 2018; 341-364.
    25. Cheng, P.-P.; Zhang, Y.-W.; Liang, J.-M.; Tan, W.-Y.; Chen, X.; Liu, Y.; Min, Y., A facile route to surface passivation of both the positive and negative defects in perovskite solar cells via a self-organized passivation layer from fullerene. Solar Energy 2019, 190, 264-271.
    26. Li, Y.; Zuo, Z.; Li, Y., 2D carbon graphdiyne: fundamentals and applications. In Handbook of Carbon-Based Nanomaterials, Thomas, S.; Sarathchandran, C.; Ilangovan, S. A.; Moreno-Piraján, J. C., Eds. Elsevier: 2021; 461-516.
    27. Listorti, A.; O’Regan, B.; Durrant, J. R., Electron transfer dynamics in dye-sensitized solar cells. Chemistry of Materials 2011, 23 (15), 3381-3399.
    28. Brown, T. M.; De Rossi, F.; Di Giacomo, F.; Mincuzzi, G.; Zardetto, V.; Reale, A.; Di Carlo, A., Progress in flexible dye solar cell materials, processes and devices. Journal of Materials Chemistry A 2014, 2 (28), 10788-10817.
    29. Tai, Q.; Zhao, X.-Z., Pt-free transparent counter electrodes for cost-effective bifacial dye-sensitized solar cells. Journal of Materials Chemistry A 2014, 2 (33), 13207-13218.
    30. Ahmad, S.; Guillén, E.; Kavan, L.; Grätzel, M.; Nazeeruddin, M. K., Metal free sensitizer and catalyst for dye sensitized solar cells. Energy & Environmental Science 2013, 6 (12), 3439-3466.
    31. Lee, C.-P.; Lin, R. Y.-Y.; Lin, L.-Y.; Li, C.-T.; Chu, T.-C.; Sun, S.-S.; Lin, J. T.; Ho, K.-C., Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances 2015, 5 (30), 23810-23825.
    32. Kokkonen, M.; Talebi, P.; Zhou, J.; Asgari, S.; Soomro, S. A.; Elsehrawy, F.; Halme, J.; Ahmad, S.; Hagfeldt, A.; Hashmi, S. G., Advanced research trends in dye-sensitized solar cells. Journal of Materials Chemistry A 2021, 9 (17), 10527-10545.
    33. Hussain, I.; Tran, H. P.; Jaksik, J.; Moore, J.; Islam, N.; Uddin, M. J., Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Materials 2018, 1 (3), 133-154.
    34. Dai, T.; Cao, Q.; Yang, L.; Aldamasy, M. H.; Li, M.; Liang, Q.; Lu, H.; Dong, Y.; Yang, Y., Strategies for high-performance large-area perovskite solar cells toward commercialization. Crystals 2021, 11 (3), 295.
    35. Yuan, Z.; Shu, Y.; Xin, Y.; Ma, B., Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chemical Communications 2016, 52 (20), 3887-3890.
    36. Shi, E.; Gao, Y.; Finkenauer, B. P.; Akriti; Coffey, A. H.; Dou, L., Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews 2018, 47 (16), 6046-6072.
    37. Zhang, J.; Song, X.; Wang, L.; Huang, W., Ultrathin two-dimensional hybrid perovskites toward flexible electronics and optoelectronics. National Science Review 2021, 9 (5), 1-3.
    38. Li, M.; Liu, T.; Wang, Y.; Yang, W.; Lü, X., Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies. Matter and Radiation at Extremes 2020, 5 (1), 018201.
    39. Swarnkar, A.; Ravi, V. K.; Nag, A., Beyond colloidal cesium lead halide perovskite nanocrystals: analogous metal halides and doping. ACS Energy Letters 2017, 2 (5), 1089-1098.
    40. Shi, Z.; Guo, J.; Chen, Y.; Li, Q.; Pan, Y.; Zhang, H.; Xia, Y.; Huang, W., Lead-free organic–inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Advanced Materials 2017, 29 (16), 1605005.
    41. Wang, M.; Wang, W.; Ma, B.; Shen, W.; Liu, L.; Cao, K.; Chen, S.; Huang, W., Lead-free perovskite materials for solar cells. Nano-Micro Letters 2021, 13 (1), 62.
    42. Kamat, P. V.; Bisquert, J.; Buriak, J., Lead-free perovskite solar cells. ACS Energy Letters 2017, 2 (4), 904-905.
    43. Giustino, F.; Snaith, H. J., Toward lead-free perovskite solar cells. ACS Energy Letters 2016, 1 (6), 1233-1240.
    44. Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society 2012, 134 (42), 17396-17399.
    45. Mesquita, I.; Andrade, L.; Mendes, A., Temperature impact on perovskite solar cells under operation. ChemSusChem 2019, 12 (10), 2186-2194.
    46. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.
    47. Niu, G.; Guo, X.; Wang, L., Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (17), 8970-8980.
    48. Murugadoss, G.; Tanaka, S.; Mizuta, G.; Kanaya, S.; Nishino, H.; Umeyama, T.; Imahori, H.; Ito, S., Light stability tests of methylammonium and formamidinium Pb-halide perovskites for solar cell applications. Japanese Journal of Applied Physics 2015, 54 (8S1), 08KF08.
    49. Bakr, Z. H.; Wali, Q.; Fakharuddin, A.; Schmidt-Mende, L.; Brown, T. M.; Jose, R., Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 2017, 34, 271-305.
    50. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications 2017, 8 (1), 15218.
    51. Tavakoli, M. M.; Simchi, A.; Fan, Z.; Aashuri, H., Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. Chemical Communications 2016, 52 (2), 323-326.
    52. Tayyebi, A.; Tavakoli, M. M.; Outokesh, M.; Shafiekhani, A.; Simchi, A., Supercritical synthesis and characterization of graphene–PbS quantum dots composite with enhanced photovoltaic properties. Industrial & Engineering Chemistry Research 2015, 54 (30), 7382-7392.
    53. Wang, J. T.-W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J.; Nicholas, R. J., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters 2014, 14 (2), 724-730.
    54. Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; Fenoll, M.; Dindar, A.; Haske, W.; Najafabadi, E.; Khan, T. M.; Sojoudi, H.; Barlow, S.; Graham, S.; Brédas, J.-L.; Marder, S. R.; Kahn, A.; Kippelen, B., A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336 (6079), 327-332.
    55. Yadav, P.; Turren-Cruz, S.-H.; Prochowicz, D.; Tavakoli, M. M.; Pandey, K.; Zakeeruddin, S. M.; Grätzel, M.; Hagfeldt, A.; Saliba, M., Elucidation of charge recombination and accumulation mechanism in mixed perovskite solar cells. The Journal of Physical Chemistry C 2018, 122 (27), 15149-15154.
    56. Tavakoli, M. M.; Giordano, F.; Zakeeruddin, S. M.; Grätzel, M., Mesoscopic oxide double layer as electron specific contact for highly efficient and UV stable perovskite photovoltaics. Nano Letters 2018, 18 (4), 2428-2434.
    57. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345 (6196), 542-546.
    58. Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science 2016, 9 (6), 1989-1997.
    59. Xu, Z.; Yin, X.; Guo, Y.; Pu, Y.; He, M., Ru-doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance. Journal of Materials Chemistry C 2018, 6 (17), 4746-4752.
    60. Wang, J.; Qin, M.; Tao, H.; Ke, W.; Chen, Z.; Wan, J.; Qin, P.; Xiong, L.; Lei, H.; Yu, H.; Fang, G., Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer. Applied Physics Letters 2015, 106 (12), 121104.
    61. Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Grätzel, M.; Hagfeldt, A., The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science 2017, 10 (3), 710-727.
    62. Gao, X.-X.; Ge, Q.-Q.; Xue, D.-J.; Ding, J.; Ma, J.-Y.; Chen, Y.-X.; Zhang, B.; Feng, Y.; Wan, L.-J.; Hu, J.-S., Tuning the fermi-level of TiO2 mesoporous layer by lanthanum doping towards efficient perovskite solar cells. Nanoscale 2016, 8 (38), 16881-16885.
    63. Ren, Z.; Wu, J.; Wang, N.; Li, X., An Er-doped TiO2 phase junction as an electron transport layer for efficient perovskite solar cells fabricated in air. Journal of Materials Chemistry A 2018, 6 (31), 15348-15358.
    64. Di Girolamo, D.; Di Giacomo, F.; Matteocci, F.; Marrani, A. G.; Dini, D.; Abate, A., Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chemical Science 2020, 11 (30), 7746-7759.
    65. Cao, T.; Wang, Z.; Xia, Y.; Song, B.; Zhou, Y.; Chen, N.; Li, Y., Facilitating electron transportation in perovskite solar cells via water-soluble fullerenol interlayers. ACS Applied Materials & Interfaces 2016, 8 (28), 18284-18291.
    66. Shen, Q.; Ogomi, Y.; Chang, J.; Toyoda, T.; Fujiwara, K.; Yoshino, K.; Sato, K.; Yamazaki, K.; Akimoto, M.; Kuga, Y.; Katayama, K.; Hayase, S., Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances. Journal of Materials Chemistry A 2015, 3 (17), 9308-9316.
    67. Zuo, L.; Chen, Q.; De Marco, N.; Hsieh, Y.-T.; Chen, H.; Sun, P.; Chang, S.-Y.; Zhao, H.; Dong, S.; Yang, Y., Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells. Nano Letters 2017, 17 (1), 269-275.
    68. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.
    69. Jacobsson, T. J.; Correa-Baena, J.-P.; Halvani Anaraki, E.; Philippe, B.; Stranks, S. D.; Bouduban, M. E. F.; Tress, W.; Schenk, K.; Teuscher, J.; Moser, J.-E.; Rensmo, H.; Hagfeldt, A., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. Journal of the American Chemical Society 2016, 138 (32), 10331-10343.
    70. Chen, Q.; Zhou, H.; Song, T.-B.; Luo, S.; Hong, Z.; Duan, H.-S.; Dou, L.; Liu, Y.; Yang, Y., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters 2014, 14 (7), 4158-4163.
    71. Cimaroli, A. J.; Yu, Y.; Wang, C.; Liao, W.; Guan, L.; Grice, C. R.; Zhao, D.; Yan, Y., Tracking the maximum power point of hysteretic perovskite solar cells using a predictive algorithm. Journal of Materials Chemistry C 2017, 5 (39), 10152-10157.
    72. Wang, F.; Bai, S.; Tress, W.; Hagfeldt, A.; Gao, F., Defects engineering for high-performance perovskite solar cells. npj Flexible Electronics 2018, 2 (1), 22.
    73. Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.-C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y., Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10 (3), 355-396.
    74. Kim, M.; Kim, G.-H.; Lee, T. K.; Choi, I. W.; Choi, H. W.; Jo, Y.; Yoon, Y. J.; Kim, J. W.; Lee, J.; Huh, D.; Lee, H.; Kwak, S. K.; Kim, J. Y.; Kim, D. S., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3 (9), 2179-2192.
    75. Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J., Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications 2014, 5 (1), 5784.
    76. Abate, A.; Saliba, M.; Hollman, D. J.; Stranks, S. D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H. J., Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. Nano Letters 2014, 14 (6), 3247-3254.
    77. Guo, Y.; Ma, J.; Lei, H.; Yao, F.; Li, B.; Xiong, L.; Fang, G., Enhanced performance of perovskite solar cells via anti-solvent nonfullerene Lewis base IT-4F induced trap-passivation. Journal of Materials Chemistry A 2018, 6 (14), 5919-5925.
    78. Jiang, Y.; Li, J.; Xiong, S.; Jiang, F.; Liu, T.; Qin, F.; Hu, L.; Zhou, Y., Dual functions of interface passivation and n-doping using 2,6-dimethoxypyridine for enhanced reproducibility and performance of planar perovskite solar cells. Journal of Materials Chemistry A 2017, 5 (33), 17632-17639.
    79. Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J., Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 2014, 8 (10), 9815-9821.
    80. Zhang, H.; Wu, Y.; Shen, C.; Li, E.; Yan, C.; Zhang, W.; Tian, H.; Han, L.; Zhu, W.-H., Efficient and stable chemical passivation on perovskite surface via bidentate anchoring. Advanced Energy Materials 2019, 9 (13), 1803573.
    81. Liao, Y.; Zhang, J.; Wang, W.; Yang, Z.; Huang, R.; Lin, J.; Che, L.; Yang, G.; Pan, Z.; Rao, H.; Zhong, X., Anti-dissociation passivation via bidentate anchoring for efficient carbon-based CsPbI2.6Br0.4 solar cells. Advanced Functional Materials 2023, 33 (20), 2214784.
    82. Buyruk, A.; Blätte, D.; Günther, M.; Scheel, M. A.; Hartmann, N. F.; Döblinger, M.; Weis, A.; Hartschuh, A.; Müller-Buschbaum, P.; Bein, T.; Ameri, T., 1,10-Phenanthroline as an efficient bifunctional passivating agent for MAPbI3 perovskite solar cells. ACS Applied Materials & Interfaces 2021, 13 (28), 32894-32905.
    83. Yoo, H.-S.; Park, N.-G., Post-treatment of perovskite film with phenylalkylammonium iodide for hysteresis-less perovskite solar cells. Solar Energy Materials and Solar Cells 2018, 179, 57-65.
    84. Degani, M.; An, Q.; Albaladejo-Siguan, M.; Hofstetter, Y. J.; Cho, C.; Paulus, F.; Grancini, G.; Vaynzof, Y., 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Science Advances 2021, 7 (49), eabj7930.
    85. Lee, J.-W.; Dai, Z.; Han, T.-H.; Choi, C.; Chang, S.-Y.; Lee, S.-J.; De Marco, N.; Zhao, H.; Sun, P.; Huang, Y.; Yang, Y., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nature Communications 2018, 9 (1), 3021.
    86. Luo, C.; Li, G.; Chen, L.; Dong, J.; Yu, M.; Xu, C.; Yao, Y.; Wang, M.; Song, Q.; Zhang, S., Passivation of defects in inverted perovskite solar cells using an imidazolium-based ionic liquid. Sustainable Energy & Fuels 2020, 4 (8), 3971-3978.
    87. Zhang, B.; Liu, D.; Chen, P.; Liu, W.; Zhao, J.; Li, H.; Liu, H., Improved perovskite crystallization via antisolvent-assisted processed using additive engineering for efficient perovskite solar cells. Journal of Alloys and Compounds 2021, 855, 157396.
    88. Yue, L.; Yan, B.; Attridge, M.; Wang, Z., Light absorption in perovskite solar cell: Fundamentals and plasmonic enhancement of infrared band absorption. Solar Energy 2016, 124, 143-152.
    89. Hung, C.-M.; Lin, J.-T.; Yang, Y.-H.; Liu, Y.-C.; Gu, M.-W.; Chou, T.-C.; Wang, S.-F.; Chen, Z.-Q.; Wu, C.-C.; Chen, L.-C.; Hsu, C.-C.; Chen, C.-H.; Chiu, C.-W.; Chen, H.-C.; Chou, P.-T., Modulation of perovskite grain boundaries by electron donor–acceptor zwitterions R,R-diphenylamino-phenyl-pyridinium-(CH2)n-sulfonates: all-round improvement on the solar cell performance. JACS Au 2022, 2 (5), 1189-1199.
    90. Chen, P.; Ong, W.-J.; Shi, Z.; Zhao, X.; Li, N., Pb-based halide perovskites: recent advances in photo(electro)catalytic ppplications and looking beyond. Advanced Functional Materials 2020, 30 (30), 1909667.
    91. Lee, J.-W.; Kim, H.-S.; Park, N.-G., Lewis acid–base adduct approach for high efficiency perovskite solar cells. Accounts of Chemical Research 2016, 49 (2), 311-319.
    92. Maqsood, S. R.; Islam, N.; Bashir, S.; Khan, B.; Pandith, A. H., Sigma donor and pi acceptor characteristics of certain NN-bidentate ligands: a DFT Study. Journal of Coordination Chemistry 2013, 66 (13), 2308-2315.
    93. Piu, P.; Sanna, G.; Masia, A.; Antonietta Zoroddu, M.; Seeber, R., Potentiometric and spectroscopic study of ternary complexes of copper(II), substituted 1,10-phenanthrolines and oxidised glutathione. Journal of the Chemical Society, Dalton Transactions 1997, (13), 2369-2372.
    94. Zheng, G.; Zhu, C.; Ma, J.; Zhang, X.; Tang, G.; Li, R.; Chen, Y.; Li, L.; Hu, J.; Hong, J.; Chen, Q.; Gao, X.; Zhou, H., Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nature Communications 2018, 9 (1), 2793.
    95. Bu, T.; Liu, X.; Zhou, Y.; Yi, J.; Huang, X.; Luo, L.; Xiao, J.; Ku, Z.; Peng, Y.; Huang, F.; Bing, C.; Zhong, J., A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 2017, 10, 2509-2515.
    96. Hu, Y.; Aygüler, M.; Petrus, M.; Bein, T.; Docampo, P., Impact of rubidium and cesium cations on the moisture stability of multiple-cation mixed-halide perovskites. ACS Energy Letters 2017, 2, 2212-2218.
    97. Sun, Y.; Peng, J.; Chen, Y.; Yao, Y.; Liang, Z., Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive. Scientific Reports 2017, 7 (1), 46193.
    98. Zhou, Z.; Yuan, S.; Fan, J.; Hou, Z.; Zhou, W.; Du, Z.; Wu, S., CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization. Nanoscale Research Letters 2012, 7 (1), 652.
    99. Godbert, N.; Mastropietro, T.; Poerio, T., Mesoporous TiO2 thin films: state of the art. 2018.
    100. Kim, B.; Kim, J.; Park, N., First-principles identification of the charge-shifting mechanism and ferroelectricity in hybrid halide perovskites. Scientific Reports 2020, 10 (1), 19635.
    101. Prathapani, S.; Choudhary, D.; Mallick, S.; Bhargava, P.; Yella, A., Experimental evaluation of room temperature crystallization and phase evolution of hybrid perovskite materials. CrystEngComm 2017, 19, 3834-3843.
    102. Wang, K.; Huo, J.; Cao, L.; Yang, P.; Müller-Buschbaum, P.; Tong, Y.; Wang, H., Fully methylammonium-free stable formamidinium lead iodide perovskite solar cells processed under humid air conditions. ACS Applied Materials & Interfaces 2023, 15 (10), 13353-13362.

    無法下載圖示 電子全文延後公開
    2025/07/17
    QR CODE