簡易檢索 / 詳目顯示

研究生: 吳岱倫
Wu, Taren Tai-Lun
論文名稱: 使用WebXR Device API實作基於球諧函數的擴增實境光照估計模型
Light Estimation Model in Augmented Reality Based on Spherical Harmonics Using WebXR Device API
指導教授: 張鈞法
Chang, Chun-Fa
口試委員: 陳履恆
Chen, Lieu-Hen
葉正聖
Yeh, Jeng-Sheng
張鈞法
Chang, Chun-Fa
口試日期: 2022/07/25
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 31
中文關鍵詞: 全域照明擴增實境球諧函數光照估計
英文關鍵詞: Global Illumination, Augmented Reality, Spherical Harmonics, Light Estimation
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201746
論文種類: 學術論文
相關次數: 點閱:195下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 計算機圖學的領域中,基於物理的繪圖(Physically Based Rendering)模擬真實世界的光照傳遞,依物體的表面材質來計算虛擬物件接收到的光線影響。儘管現今電腦運算單元的計算效能持續升級,但模擬真實的物理光照,依舊需要耗費大量時間與運算力。如今許多應用是在手機裝置上實現,行動裝置的效能更難與電腦規格匹敵,品質與速度兩者間往往必須做出一定程度的取捨。
    擴增實境裡,使用者需要在現實世界的場景中,與電腦生成的虛擬物件互動,與電玩遊戲一樣,需要即時的互動回饋。過去擴增實境多以手機應用程式為主流的體驗;近年來,越來越多開發者探索透過網頁實現擴增實境與虛擬實境,本論文使用由全球資訊網協會發布,目前仍處於實驗性階段的WebXR Device API探索WebAR世界。
    論文結合了球諧函數與基於網頁的擴增實境,在WebAR平台上以球諧函數計算擴增實境中的光照估計,並透過實作探討WebAR平台的優勢與可能的侷限性,以及未來擴增實境在網頁上的發展潛能。

    In computer graphics, physically based rendering is a set of techniques to model real-world lights and evaluate how environment light affects surface materials of virtual objects in the scene. Despite the development of computer hardware over the decades, simulating lighting physically is still a challenging task which requires lots of time to compute. Moreover, most of applications are implemented on mobile devices nowadays. However, the computing power of mobile devices cannot catch up with desktop computers. Developers have to strike a balance between quality and speed.
    In augmented reality(AR), a user interacts with computer-generated virtual objects in a real-world view. Like computer games, AR is required to provide instant feedback to a user. In the past, app-based AR is the most common way to enter AR world. Nevertheless, there is an increasing need to implement VR and AR on immersive web.
    The research is aimed to combine spherical harmonics and latest WebXR Device API announced by W3C to achieve light estimation on immersive web. WebXR Device API, an experimental WebXR development tool, is adopted to explore the WebAR experience. Additionally, the advantage, restrictions and future potential of WebAR platform are also discussed.

    誌謝 i 摘要 ii 目次 iv 圖次 vi 表次 vii 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 1.3 論文架構 3 第二章 文獻探討 4 2.1 圖像照明 4 2.2 反射與BRDF 5 2.3 Rendering Equation 6 2.4 光線追蹤 7 2.5 預計算輻射轉換法 8 2.5.1 球諧函數 8 2.5.2 數學推導 11 2.6 WebXR Device API 13 2.6.1 歷史緣起 13 2.6.2 狀態發展 14 2.6.3 基於標記與無標記 15 2.6.4 WebXR Device API與WebGL 16 2.6.5 WebXR Device API與ARCore 18 第三章 實驗實作 19 3.1 實作設備 19 3.2 實作環境 20 3.2.1 系統架構 20 3.2.2 程式環境 20 3.3 實作流程 23 3.3.1 資料處理 23 3.3.2 球諧投影 25 3.3.3 球諧重建 25 第四章 實驗成果與分析 26 4.1 實驗成果 26 4.2 比較分析 28 第五章 結論與未來研究 29 文獻參考 30

    [1] 陳凱恩(2019)。於擴增實境中虛擬物件的光照與陰影之擬真。國立臺灣師範大學資訊工程學系碩士論文,台北市。https://hdl.handle.net/11296/287ek7
    [2] Emil Persson (2014, April 27). Fisherman's Bastion. Humus. https://www.humus.name/index.php?page=Textures&ID=117
    [3] Google Developers. WebXR compared to ARCore. Google ARCore. https://developers.google.com/ar/develop/webxr/arcore-comparison
    [4] Green, R. (2003, March). Spherical harmonic lighting: The gritty details. In Archives of the game developers conference (Vol. 56, p. 4).
    [5] Henrik (2008, April 12). Ray tracing (graphics). In Wikipedia. https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
    [6] Kato, H., & Billinghurst, M. (1999, October). Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99) (pp. 85-94). IEEE.
    [7] Mendigochea, P. (2017). WebAR: creating augmented reality experiences on smart glasses and mobile device browsers. In ACM SIGGRAPH 2017 Studio (pp. 1-2).
    [8] Rakesh Baruah. (2020). AR and VR Using the WebXR API: Learn to Create Immersive Content with WebGL, Three.js, and A-Frame (1st ed.). Apress.
    [9] Shepiliev, D. S., Modlo, Y. O., Yechkalo, Y. V., Tkachuk, V. V., Mintii, M. M., Mintii, I. S., ... & Semerikov, S. O. (2021). WebAR development tools: An overview. CEUR Workshop Proceedings.
    [10] Sloan, P. P., Kautz, J., & Snyder, J. (2002, July). Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques (pp. 527-536).
    [11] Slomp, M. P. B., Oliveira Neto, M. M. D., & Patrício, D. I. (2006). A gentle introduction to precomputed radiance transfer. Revista de informática teórica e aplicada. Porto Alegre. Vol. 13, n. 2 (2006), p. 131-160.
    [12] Supan, P., Stuppacher, I., & Haller, M. (2006). Image based shadowing in real-time augmented reality. International Journal of Virtual Reality, 5(3), 1-7.
    [13] The Immersive Web Working Group (2022, March 31). W3C Candidate Recommendation Snapshot. Immersive Web at W3C. https://immersive-web.github.io/webxr/
    [14] The Immersive Web Working Group. WebXR Device API Specification. Immersive Web at W3C. https://github.com/immersive-web/webxr
    [15] The World Wide Web Consortium (2021, November 2). W3C Process Document. https://www.w3.org/2021/Process-20211102/
    [16] VonHaarberg (2018, February 3). Bidirectional reflectance distribution function. In Wikipedia. https://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function

    下載圖示
    QR CODE