研究生: |
洪嘉駿 Hong, Jia-Jyun |
---|---|
論文名稱: |
以[2.2]對環芳建構的雙極性有機發光二極體材料 [2.2]Paracyclophane-based Ambipolar Compounds for Organic Light Emitting Diodes Application |
指導教授: |
葉名倉
Yeh, Ming-Chang 林建村 Lin, Jiann-Tsuen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 有機發光二極體 、[2.2]對環芳 、雙極性載子傳輸 、主體材料 、藍光材料 |
英文關鍵詞: | OLED, [2.2]paracyclopane, ambipolar carrier mobility, host material, blue light emitter |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.061.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:120 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成出六個以PCP([2.2]paracyclophane)為結構核心的HJJ系列雙極性分子,藉由引入不同的推電子基(arylamine或 9H-carbazole),搭配cyano拉電子基,以及共軛鏈長之改變來調控分子雲的定域化程度,五個分子結構且經過X-ray晶體繞射圖譜鑑定。此系列分子擁有寬能隙(> 3.25 eV),螢光光色在極性溶劑和非極性溶劑中皆屬紫/藍光。此系列分子的熱裂解溫度在250 oC以上。HJJ-2發現薄膜態有堆疊誘導強化發光現象,其螢光量子產率高達82%,且具有雙極性載子傳輸能力。以之作為發光層製成電激發光元件,外部量子效率可達約0.5%。以上化合物具有做為藍光發光材料或摻雜發光材料之主體(host)材料的潛力。
Six [2.2]paracyclophane derivatives, HJJ, have been synthesized. The electronic cloud localization of the molecules is tuned by varying electron donor (diphenylamine or 9H-carbazole) and electron acceptor (cyano) at the pseudopara sites of the [2.2]paracyclophane, and the conjugation length. Among them, five compounds were structurally characterized by single crystal X-ray diffraction. The six new compounds have a large HOMO/LUMO gap (> 3.25 eV) and emit purple/blue light. The thermal decomposition temperatures of the compounds are higher than 248 oC. In the film state, compound HJJ-2 exhibits aggregation-induced emission enhancement behavior with a high film quantum yield of 82%. Moreover, it exhibits bipolar carrier transport characteristics, and its electron and hole mobilities are 1.47 × 10-3 and 1.15×10-6 cm2/Vs, respectively. OLED device using the compound as the emitting layer has an external quantum efficiency (EQE) of 0.5%. The new compounds are potential blue light emitters or hosts for emitting fluorophores.
1. 陳金鑫, 黃孝文, OLED-夢幻顯示器 Materials and Devices-OLED 材料與元件, 五南圖書, 2009.
2. 簡金雄, 陳金鑫, 二十一世紀的明星產業-有機發光二極體平面顯示器技術, 光電科技, 24, 2001.
3. AN OIDA TECHNOLOGY ROADMAP, Organic Light Emitting Diodes (OLEDs) for General Illumination Update; M. Stolka, 2002.
4. (a) A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys. 1953, 50, 64. (b) A. Bernanose, P. Vouaux, J. Chim. Phys. 1953, 50, 261. (c) A. Bernanose, J. Chim. Phys. 1955, 52, 396.
5. C. W. Tang, S. A. Van Slyke, Appl. Phys. Lett. 1987, 51, 913.
6. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
7. Essentials of molecular photochemistry; A. Gilbert, J. E. Baggott; Wiley-Blackwell, 1991.
8. (a) W.-C. Shen, Y.-K. Su, L.-W. Ji, Mater. Sci. Eng. A, 2006, 445, 509. (b) B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, J. C. Scott, J. Appl. Phys. 2001, 83, 4575.
9. M. Stoβel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, Appl. Phys. Lett. 2000, 76, 115.
10. J. Kido, C. Ohtaki, K. Okuyama, K. Nagai, Jpn. J. Appl. Phys. 1993, 32, 917.
11. E. Polikarpov, J. S. Swensen N. Chopra, F. So, A. B. Padmaperuma, Appl. Phys. Lett. 2009, 94, 223304.
12. T. H. Huang, J. T. Lin, L. Y. Chen, Y. T. Lin, C. C. Wu, Adv. Mater. 2006, 18, 602.
13. M. A. Baldo, D. F. O'Brien, Y. You, Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
14. Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931.
15. K. Shizu, H. Tanaka, M. Uejima, T. Sato, K. Tanaka, H. Kaji, C. Adachi, J. Phys. Chem. C 2015, 119, 1291.
16. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
17. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett. 1999, 75, 1697.
18. J. Salbeck, N. Yu, J. Bauer, F. WeissGrtel, H. Bestgen, Synth. Met. 1997, 91, 209.
19. K. R. J. Thomas, J. T. Lin, Y. T. Tao, C. W. Ko, J. Am. Chem. Soc. 2001, 123, 9404.
20. I. D. Parker, J. Appl. Phys. 1994, 75, 1656. (b) J. Shewchun, J. Dubow, C.W. Wilmsen, R. Singh, D. Burk, J. F. Wager, J. Appl. Phys. 1979, 50, 2832. (c) N. Bakasybramanian, A. Subrahmanyam, J. Electrochem. Soc. 1991, 138, 322.
21. S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 1996, 69, 2160.
22. (a) C. J. Brown, A. C. Farthing, Nature 1949, 164, 915. (b) D. J. Cram, H. Steinberg, J. Am. Chem. Soc. 1951, 73, 5691. (c) Cyclophane Chemistry: Synthesis, Structures and Reactions; F. Vögtle, John Wiley & Sons: Chichester, 1993. (d) Modern Cyclophane Chemistry; R. Gleiter, H, Hopf; Wiley-VCH: Weinheim, 2004.
23. (a) J. L. Zafra, A. M. Onotoria, M. Peña-Alvarez, M. Samoc, J. Szeremeta, F. J. Ramírez, M. D. Lovander, C. J. Droske, T. M. Pappenfus, L. Echegoyen, J. T. L. Navarrete, N. Martin, J. Casado, J. Am. Chem. Soc. 2017, 139, 3095. (b) S. D. Perera, S.G. Urquhart, J. Phys. Chem. A 2017, 121, 4907.
24. V. Thanikachalam, E. Sarojpurani, J. Jayabharathi, P. Jeeva, New J. Chem. 2017, 41, 2443. (b) Y. Hu, W. Cai, L. Ying, D. Chen, X. Yang, X. Jiang, S. Su, F. Huang, Y. Cao, J. Mater. Chem. C 2018, 6, 2690. (c) X. Liua, Q. Tian, D. Zhao, J. Fan, L. Liao, Org. Electron. 2018, 56, 186.
25. C.-Y. Chan, L.-S. Cui, J. U. Kim, H. Nakanotani, C. Adachi Adv. Funct. Mater. 2018, 28, 1706023.
26. J. L. Bredas, R. Silbey, D. S. Boudreaux, R. R. Chance, J. Am. Chem. Soc. 1983, 105, 6555.
27. A. M . Brouwer, Pure Appl. Chem., 2011, 83, 2213.
28. J. Russ. Gen. Chem. 2012, 82, 206.
29. J. R. Malpass, D. A. Hemmings, A. L. Wallis, S. R. Fletcher, S. Patel, J. Chem. Soc. Perkin Trans.1 2001, 9, 1044.
30. H. Wolf, D. Leusser, M. R. V. Jørgensen, R. Herbst-Irmer, Y. Chen, E. Scheidt, W. Scherer, B. B. Iversen, D. Stalke, Chem. Eur. J. 2014, 20, 7048.
31. H. J. Reich, D. J. Cram, J. Am. Chem. Soc. 1969, 91, 3527. (b) The Synthesis and Applications of [2.2]Paracyclophane Derivatives; C. Hicks; Dublin Institute of Technology, 2016.
32. A. Klapars, J. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7727. (b) A. Kiyomori, J. F. Marcoux, S. L. Buchwald, Tetrahedron Lett. 1999, 40, 2657. (c) M. Wolter, A. Klapars, S. L. Buchwald, Org. Lett. 2001, 3, 803.
33. D. Giang, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 11049.
34. (a) N. Miyaura, A. Suzuki, Chem. Commun. 1979, 19, 866. (b) A. Suzuki, J. Organomet. Chem. 1999, 576, 147. (c) D. D. Winkle and K. M. Schaab, Org. Process Res. Dev. 2001, 5, 450.
35. J. Franck, Trans. Faraday Soc. 1926, 21, 536.
36. (a) M. Hussein, N. Assadi, D. A. H. Hanaor, J. Appl. Phys. 2013, 113, 233913. (b) M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys. Condens. Matter. 2002, 14, 2717.
37. X. Yang, H. Liu, R. Qiao, Y. Jiang, Y. Zhao, Synlett. 2010, 101. (b) Laser Spectroscopy: Basic Concepts and Instrumentation; W. Demtröder; Springer, 2013. (c) Atomic Spectroscopy; James W. Robinson; MARCEL DEKKER Incorporated, 2013.
38. Modern Physical Organic Chemistry; E. V. Ansyl, D. A. Dougherty; University Science Books, 2005.
39. (a) Principles of Semiconductor Devices, Chapter 2: Semiconductor Fundamentals; B. V. Zeghbroeck; 2011. (b) Supramolecular Photosensitive and Electroactive Materials, Chapter 3 - Electronic Properties of Molecular Organic Semiconductor Thin Films; D. Schlettwein; Academic Press, 2001.
40. (a) Y. Hong, J. W. Y. Lam, T. B. Zhong, Chem. Soc. Rev. 2011, 40, 5361. (b) M. Ju, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang, J. W. Y. Lam, Adv. Mater. 2014, 26, 5429. (c) M. Ju, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, J. W. Y. Lam, Chem. Rev. 2015, 115, 11718.
41. T.-H. Huang, J. T. Lin, L.-Y. Chen, Y.-T. Lin, C.-C. Wu, Adv. Mater. 2006, 18, 602.
42. (a) H. Bässler, Int. J. Mod. Phys. B 1994, 8, 847. (b) H. Bässler, Philos. Mag. B 1992, 65, 795. (c) W. D. Gill, J. Appl. Phys. 1972, 43, 5033.
43. L.-B. Lin, R. H. Young, M. G. Mason, S. A. Jenekhe, P. M. Borsenberger, Appl. Phys. Lett. 1998, 72, 864.
44. Y. Li, M. K. Fung, Z. Xie, S.-T. Lee, L.-S. Hung, J. Shi, Adv. Mater. 2002, 14, 1317.