研究生: |
林泓宇 |
---|---|
論文名稱: |
含鎳超氧化物歧化酶擬態化合物之合成 Synthesis of Mimics for Nickel Superoxide Dismutase |
指導教授: | 李位仁 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 鎳錯合物 、含鎳超氧化物歧化酶 、擬態化合物 |
英文關鍵詞: | Ni Complexs, NiSOD, Mimics |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.059.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:133 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究承接本實驗室所開發出的鎳超氧岐化酶擬態化合物2,6-bis(((S)-2-(diphenyl-hydroxymethyl)-1pyrrolidinyl)methyl)pyridine (H2BDPP)系列配基,將苯環區進行修飾得到H2BDP2-dioP。此配基在進行去質子化後與[Ni(CH3CN)6](ClO4)2反應得到的二價錯合物Ni(BDP2-dioP),可跟氧化劑反應得到三價鎳的EPR光譜,從UV-vis光譜上也可以看到此三價鎳錯合物與超氧化鉀反應還原成二價NiBDP2-dioP的過程。除了如同其他NiBDPP系列錯合物一般有形成鎳三價錯合物的特性。在不破壞配位中心的條件下,Ni(BDP2-dioP)可以直接進行官能基轉換形成醛基修飾鎳二價錯合物NiBDPCHOP。基於醛類易氧化還原與跟其他官能基縮合等特點,提供Ni(BDPCHOP)進一步進行官能基修飾,和接到胜肽鏈上合成人工酵素的潛力
Based on the ligand 2,6-bis(((S)-2-(diphenyl-hydroxymethyl)-1-pyrrolidinyl)methyl)pyridine (H2BDPP) previously synthesized in our lab, this work has focused on studying that how to change a functonal group to another on the ligand in the mimics of NiSOD. Therefore, we have designed and synthsized a protected ligand H2BDP2-dioP. After deprotonating the ligands and reacting with [Ni(CH3CN)6](ClO4)2, the complexe Ni(BDP2-dioP) (1) have been prepared. Complex 1 can be oxided by FcPF6 to [Ni(BDP2-dioP)](PF6) (3), which has been demonstrated by the EPR diagrams to NiIII species. The electron absorption spectroscopy and X-ray crystallography indicate that reaction of 3 with KO2 produce original complexes 1 without deprotection of dioxolane group. The dioxolane group of complex 1 is stable unless it has been deprotected by FeCl3 to Ni(BDPCHOP) (2), without side reaction and demetalation.
1.Che, M.; Wang, R.; Li, X.; Wang, H.-Y. and Zheng, X. S. Drug discovery today, 2016, 21(1), 143-149.
2.McCord, J. M. and Fridovich, I. J. Biol. Chem., 1969, 244(22), 6049-6055.
3.Keele, B. B.; McCord, J. and Fridovich, I. J. Biol. Chem., 1970, 245(22), 6176-6181.
4.Yost, F. J. and Fridovich, I. J. Biol. Chem., 1973, 248(14), 4905-4908.
5.Youn, H.-D.; Kim, E.-J.; Roe, J.-H.; Hah, Y. C. and Kang, S.-O. Biochem. J, 1996, 318(3), 889-896.
6.Barondeau, D. P.; Kassmann, C. J.; Bruns, C. K.; Tainer, J. A. and Getzoff, E. D. Biochemistry, 2004, 43(25), 8038-8047.
7.Lee, W. Z.; Chiang, C. W.; Lin, T. H. and Kuo, T. S. Chem. Eur. J., 2012, 18(1), 50-53.
8.Herbst, R. W.; Guce, A.; Bryngelson, P. A.; Higgins, K. A.; Ryan, K. C.; Cabelli, D. E.; Garman, S. C. and Maroney, M. J. Biochemistry, 2009, 48(15), 3354-3369.
9.Sheng, Y.; Abreu, I. A.; Cabelli, D. E.; Maroney, M. J.; Miller, A.-F.; Teixeira, M. and Valentine, J. S. Chem. Rev, 2014, 114(7), 3854-3918.
10.Shearer, J. and Long, L. M. Inorg. Chem., 2006, 45(6), 2358-2360.
11.Shearer, J.; Peck, K. L.; Schmitt, J. C. and Neupane, K. P. J. Am. Chem. Soc., 2014, 136(45), 16009-16022.
12.Shearer, J. and Zhao, N. Inorg. Chem., 2006, 45(24), 9637-9639.
13.Mathrubootham, V.; Thomas, J.; Staples, R.; McCraken, J.; Shearer, J. and Hegg, E. L. Inorg. Chem., 2010, 49(12), 5393-5406.
14.Broering, E. P.; Truong, P. T.; Gale, E. M. and Harrop, T. C. Biochemistry, 2013, 52(1), 4-18.
15.Nakane, D.; Wasada-Tsutsui, Y.; Funahashi, Y.; Hatanaka, T.; Ozawa, T. and Masuda, H. Inorg. Chem., 2014, 53(13), 6512-6523.
16.Truong, P. T.; Gale, E. M.; Dzul, S. P.; Stemmler, T. L. and Harrop, T. C. Inorg. Chem., 2017, 56(14), 7761-7780.