簡易檢索 / 詳目顯示

研究生: 廖譽凱
Liao, Yu-Kai
論文名稱: 石榴石型全固態電解質電池製作及其特性分析
Preparation and Characterization of Garnet-type All Solid State Electrolyte Batteries
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 66
中文關鍵詞: 全固態電池鋰鑭鋯氧界面層
英文關鍵詞: All solid state batteries, LLZO, interfacial layer
DOI URL: http://doi.org/10.6345/THE.NTNU.DP.018.2018.B04
論文種類: 學術論文
相關次數: 點閱:197下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科技發展日新月累,人們對科技產品要求與日俱增,儲能系統為新世代科技產品之命脈,其中電池為最重要與常見之儲能系統。現今商用鋰離子電池多使用膠態與液態電解質具充放電前後不可逆電容高與爆炸之問題。三星Galaxy Note7因手機電池隔離膜過薄,且電池設計不良使電極受擠壓接觸短路,造成多起爆炸事件後,安全性於鋰離子電池研究中躍至首席地位。故本研究藉固態電解質取代傳統液態與膠態電解質,固態電解質具高安全性、高能量密度等優點。
    研究第一部分以固態反應法合成固態電解質鋰鑭鋯氧 (Li7La3Zr2O12; LLZO)、鋰鑭鋯鉭氧 (Li6.75La3Zr1.75Ta0.25O12; LLZTO)與鋰鎵鑭鋯鉭氧(Li6.8Ba0.05La2.95Zr1.75Ta0.25O12; LBLZTO)做比較,證明經元素摻雜後提升固態電解質離子導電度,並以鋰金屬與磷酸鋰鐵複合式正極組合全固態電池,元素摻雜前首圈放電電容為45 mAh g-1,經鉭與鋇摻雜後提升至150 mAh g-1。研究第二部分因全固態電池微觀表面接觸性不佳與鋰枝晶問題,故於界面處藉以高分子界面膜提升其表面接觸性。經電化學阻抗量測各系列界面阻抗,證明高分子界面膜使界面電阻以1309至388 Ω cm2。

    The goal of this study is to fabricate and analyze all-solid-state Li-ion battery interface, thereby enhancing the Cycling stability. The cell assembled by highly conductivity garnet-type solid-state electrolyte (SSE)Li7La3Zr2O12 (LLZO), Li6.75La3Zr1.75Ta0.25O12 (LLZTO) and Li6.8Ba0.05La2.95Zr1.75Ta0.25O12 (LBLZTO). The cathode slurry was prepared by mixing poly(vinylidene fluoride) (PVdF), LiTFSI , KS6 and LiFePO4 and directly coating on SSE one side. Li-foil was pressed on the opposite side as an anode. The interface between cathode and SSE was filled by PEO : LiTFSI (1:1) which acts as a buffer layer to minimize interface resistance. Specific capacity and cycle life test were carried out at a rate of 0.05 C. Conductivity of the SSEs are in the order of 10-4 S/cm at room temperature as obtained from electrochemical impedance spectroscopy (EIS). The cell was cycled at 60°C for 15 repeated cycles. The first cycle charge capacity of the cell is 45, 140 and 150 mAhg-1.
    The formation of Li-SSE interfacial contact has been inhibited using a buffer layer with Li-ion containing polymer layer(PEO : LiTFSI = 1 : 1) and reduce interface resistance between SSE and cathode form 1309 to 388 Ω cm2.

    謝辭 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 第一章 緒論 1 1.1 電池之起源 2 1.2 鋰離子二次電池 4 1.3 鋰離子電池正極材料 5 1.3.1 嵌入式正極 5 1.3.1.1 層狀正極材料 5 1.3.1.2 尖晶石型正極材料 7 1.3.1.3 橄欖石型正極材料 9 1.3.2 反應式正極 9 1.4 固態電解質相間界面(solid electrolyte interphase; SEI) 12 1.5 鋰離子電池負極材料 13 1.5.1 鋰金屬 13 1.5.2 碳材 14 1.5.3 矽負極 15 1.5.4 鈦酸鋰(lithium titanium oxide; Li4Ti5O12) 17 1.6 鋰離子電池電解質 17 1.6.1 液態電解質 17 1.6.2 膠態電解質 18 1.6.3 無機固態電解質 18 1.6.4 鋰鑭鋯氧(Li6.75La3Zr2O12; LLZO) 20 1.7 固態電解質界面改善 23 1.8 研究動機與目的 24 第二章 實驗步驟與儀器分析原理 25 2.1 化學藥品 25 2.2 摻雜元素之鋰鑭鋯氧合成實驗步驟 26 2.3 全固態電池 27 2.3.1 複合正極 27 2.3.2 全固態電池組裝 28 2.3.3 高分子膠態界面層 28 2.4 分析儀器與原理 29 2.4.1 X 光繞射儀(X-ray diffraction; XRD) 29 2.4.1.1 同步輻射光源 (synchrotron radiation light source) 30 2.4.1.2 結構精算圖 (refinement)[45] 32 2.4.2 X光吸收光譜(X-ray absorption spectroscopy; XAS ) 33 2.4.2.1 X光近邊緣吸收光譜(X-ray absorption near edge spectroscopy; XANES) 35 2.4.2.2 延伸X光吸收微結構(Extended X-ray absorption fine structure; EXAFS) 36 2.4.3 X光光電子能譜(X-ray photoelectron spectroscopy; XPS ) 37 2.4.4 掃描式電子顯微鏡(scanning electron microscope; SEM ) 38 2.4.5 固態核磁共振儀(solid state nuclear magnetic resonance; SSNMR ) 39 2.4.6 電化學阻抗譜(electrical impedance spectroscopy; EIS) 42 2.4.7 阿瑞尼士圖(Arrhenius plot) 43 2.4.8 充放電測試儀(cycling test machine) 44 第三章 結果與討論 46 3.1 LLZO、LLZTO與LBLZTO結構分析 46 3.1.1 X光繞射 46 3.1.2 中子粉末繞射 47 3.1.3 X光吸收光譜比較 52 3.1.4 掃描式電子顯微鏡鑑定 52 3.2 多元素摻雜之鋰鑭鋯氧電化學分析 54 3.2.1 交流阻抗測試 54 3.2.2 阿瑞尼士圖分析 55 3.2.3 鋰7固態核磁共振分析 56 3.2.4 全固態電池充放電測試 57 3.2.5 界面保護層 59 第四章 結論 62 參考文獻 63

    (1) List of Countries by Carbon Dioxide Emissions - Wikipedia.
    (2) 陳鐘誠,電池的歷史與原理;泛科學網站,2013.
    (3) Hill, Marquita K. Understanding Environmental Pollution: A Primer, 2004.
    (4) Watts, John. Gcse Edexcel Science, 2006.
    (5) Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976,192, 1126-1127.
    (6) Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B. LixCoO2 (0< x<-1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980,15, 783-789.
    (7) Thackeray, M.; David, W.; Bruce, P.; Goodenough, J. Lithium Insertion into Manganese Spinels. Mater. Res. Bull. 1983,18, 461-472.
    (8) Manthiram, A.; Goodenough, J. Lithium Insertion into Fe2(SO4)3 Frameworks. J. Power Sources 1989,26, 403-408.
    (9) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997,144, 1188-1194.
    (10) Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-ion Battery Materials: Present and Future. Mater. Today 2015,18, 252-264.
    (11) Mekonnen, Y.; Sundararajan, A.; Sarwat, A. I. In A Review of Cathode and Anode Materials for Lithium-Ion Batteries, SoutheastCon, 2016, IEEE: 2016; pp 1-6.
    (12) Whittingham, M. S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004,104, 4271-4302.
    (13) Manthiram, A.; Kim, J. Low Temperature Synthesis of Insertion Oxides for Lithium Batteries. Chem. Mater. 1998,10, 2895-2909.
    (14) BASF the Chemical Company. BASF Aerospace Materials: HEDTM NCMs. 2016.
    (15) Wickham, D.; Croft, W.Crystallographic and Magnetic Properties of Several Spinels Containing Trivalent ja-1044 Manganese. J. Phys. Chem. Solids 1958,7, 351-360.
    (16) Zhang, T.; Li, D.; Tao, Z.; Chen, J. Understanding Electrode Materials of Rechargeable Lithium Batteries Via DFT Calculations. Progress in Natural Science: Materials International 2013,23, 256-272.
    (17) Tu, J.; Zhao, X.; Cao, G.; Zhuang, D.; Zhu, T.; Tu, J. Enhanced Cycling Stability of LiMn2O4 by Surface Modification with Melting Impregnation Method. Electrochim. Acta 2006,51, 6456-6462.
    (18) Padhi, A.; Nanjundaswamy, K.; Masquelier, C.; Okada, S.; Goodenough, J. Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. J. Electrochem. Soc. 1997,144, 1609-1613.
    (19) Molenda, J.; Kulka, A.; Milewska, A.; Zając, W.; Świerczek, K. Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni). Materials 2013,6, 1656-1687.
    (20) Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2009,22, 587-603.
    (21) Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries. J. Power Sources 2014,257, 421-443.
    (22) Zanini, M.; Basu, S.; Fischer, J. Alternate Synthesis and Reflectivity Spectrum of stage 1 Lithium—Graphite Intercalation Compound. Carbon 1978,16, 211-212.
    (23) Ein Eli, Y.; McDevitt, S. F.; Aurbach, D.; Markovsky, B.; Schechter, A. Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes. J. Electrochem. Soc. 1997,144, L180-L184.
    (24) Yan, J.; Zhang, J.; Su, Y.-C.; Zhang, X.-G.; Xia, B.-J. A Novel Perspective on the Formation of the Solid Electrolyte Interphase on the Graphite Electrode for Lithium-Ion Batteries. Electrochim. Acta 2010,55, 1785-1794.
    (25) Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the Correlation between Surface Chemistry and Performance of Graphite Negative Electrodes for Li-ion Batteries. Electrochim. Acta 1999,45, 67-86.
    (26) Ma, D.; Cao, Z.; Hu, A. Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nano-Micro Letters 2014,6, 347-358.
    (27) Son, I. H.; Park, J. H.; Kwon, S.; Park, S.; Rümmeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J.-m. Silicon Carbide-Free Graphene Growth on Silicon for Lithium-Ion Battery with High Volumetric Energy Density. Nature communications 2015,6, 7393.
    (28) Zhao, B.; Ran, R.; Liu, M.; Shao, Z. A Comprehensive Review of Li4Ti5O12-Based Electrodes for Lithium-Ion Batteries: the Latest Advancements and Future Perspectives. Materials Science and Engineering: R: Reports 2015,98, 1-71.
    (29) Elibama. LiTFSI Process Optimisation and Recycling. 2016.
    (30) Stephan, A. M.; Review on Gel Polymer Electrolytes for Lithium Batteries. Eur. Polym. J. 2006,42, 21-42.
    (31) Meesala, Y.; Jena, A.; Chang, H.; Liu, R.S. Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Letters 2017,2, 2734-2751.
    (32) Zhu, Y.; Zhang, Y.; Lu, L. Influence of Crystallization Temperature on Ionic Conductivity of Lithium Aluminum Germanium Phosphate Glass-Ceramic. J. Power Sources 2015,290, 123-129.
    (33) Thangadurai, V.; Kaack, H.; Weppner, W. J. Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M= Nb, Ta). J. Am. Ceram. Soc. 2003,86, 437-440.
    (34) Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007,46, 7778-7781.
    (35) Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J. Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 with The Garnet-related type Structure. J. Solid State Chem. 2009,182, 2046-2052.
    (36) Buschmann, H.; Dölle, J.; Berendts, S.; Kuhn, A.; Bottke, P.; Wilkening, M.; Heitjans, P.; Senyshyn, A.; Ehrenberg, H.; Lotnyk, A. Structure and Dynamics of the Fast Lithium ion Conductor “Li7La3Zr2O12”. PCCP 2011,13, 19378-19392.
    (37) Bernuy-Lopez, C.; Manalastas Jr, W.; Lopez del Amo, J. M.; Aguadero, A.; Aguesse, F.; Kilner, J. A. Atmosphere Controlled Processing of Ga-substituted Garnets for High Li-ion Conductivity Ceramics. Chem. Mater. 2014,26, 3610-3617.
    (38) Li, Y.; Wang, Z.; Li, C.; Cao, Y.; Guo, X. Densification and Ionic-Conduction Improvement of Lithium Garnet Solid Electrolytes by Flowing Oxygen Sintering. J. Power Sources 2014,248, 642-646.
    (39) Wang, D.; Zhong, G.; Pang, W. K.; Guo, Z.; Li, Y.; McDonald, M. J.; Fu, R.; Mi, J.-X.; Yang, Y. Toward Understanding the Lithium Transport Mechanism in Garnet-Type Solid Electrolytes: Li+ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites. Chem. Mater. 2015,27, 6650-6659.
    (40) Zhu, Y.; He, X.; Mo, Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS applied materials & interfaces 2015,7, 23685-23693.
    (41) Du, F.; Zhao, N.; Li, Y.; Chen, C.; Liu, Z.; Guo, X. All Solid State Lithium Batteries Based on Lamellar Garnet-Type Ceramic Electrolytes. J. Power Sources 2015,300, 24-28.
    (42) Bruker D2 Phaser X-ray Diffraction. .
    (43) Williams, G. P.; A General Review of Synchrotron Radiation, its Uses and Special Technologies. Vacuum 1982,32, 333-345.
    (44) 國家同步輻射中心.
    (45) Rietveld Refinement – Wikipedia.
    (46) Schnohr, C. S.; Ridgway, M. C., X-ray Absorption Spectroscopy of Semiconductors. Springer: 2015.
    (47) Giorgetti, M. A Review on the Structural Studies of Batteries and Host Materials by X-ray Absorption Spectroscopy. ISRN Materials Science 2013,2013.
    (48) McCleverty, J. A.; Meyer, T. J., Comprehensive Coordination Chemistry II. Elsevier Ltd: 2004.
    (49) Arčona, I.; Kodreb, A., Material Characterisation by X-Ray Absorption Spectroscopy (exafs, xanes). 2000.
    (50) Seah, M. The Quantitative Analysis of Surfaces by XPS: A Review. Surf. Interface Anal. 1980,2, 222-239.
    (51) Sharafi, A.; Yu, S.; Naguib, M.; Lee, M.; Ma, C.; Meyer, H. M.; Nanda, J.; Chi, M.; Siegel, D. J.; Sakamoto, J. Impact of Air Exposure and Surface Chemistry on Li–Li7La3Zr2O12 Interfacial Resistance. Journal of Materials Chemistry A 2017,5, 13475-13487.
    (52) Nada, M. H.; Scanning Electron Microscopy. BAOJ Microbiology. 2015, 1, 1-8.
    (53) Duer, M. J., Introduction to Solid-State NMR Spectroscopy. Wiley-Blackwell: 2005.
    (54) Chang, B.Y.; Park, S.M. Electrochemical Impedance Spectroscopy. Annual Review of Analytical Chemistry 2010,3, 207-229.
    (55) Ren, Y.; Deng, H.; Chen, R.; Shen, Y.; Lin, Y.; Nan, C.-W. Effects of Li Source on Microstructure and Ionic Conductivity of Al-Contained Li6.75La3Zr1.75Ta0.25O12 Ceramics. J. Eur. Ceram. Soc. 2015,35, 561-572.
    (56) Aguesse, F.; Manalastas, W.; Buannic, L.; Lopez del Amo, J. M.; Singh, G.; Llordés, A.; Kilner, J. Investigating the Dendritic Growth During Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. ACS applied materials & interfaces 2017,9, 3808-3816.
    (57) Liu, B.; Gong, Y.; Fu, K.; Han, X.; Yao, Y.; Pastel, G.; Yang, C.; Xie, H.; Wachsman, E. D.; Hu, L. Garnet Solid Electrolyte Protected Li-Metal Batteries. ACS applied materials & interfaces 2017,9, 18809-18815.

    下載圖示
    QR CODE