研究生: |
黃彥翔 |
---|---|
論文名稱: |
十八硫醇與十八烯分子藉由一步化製成自組裝於矽(111)表面的製備與鑑定 Fabrication and Characterization of Octadecylthiolate and Octadecyl SAMs on Si(111) via UV-enhanced Method in One-cell Process |
指導教授: | 洪偉修 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 自組裝分子膜 、十八硫醇 、十八烯 、矽(111) |
英文關鍵詞: | self-assembled monolayer, octadecylthiol, octadecene, Si(111) |
論文種類: | 學術論文 |
相關次數: | 點閱:184 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在之前的文獻中,單層自組裝分子膜在矽化氫表面的成長製程總是先進行氧化矽的蝕刻,使成為氫化矽表面,然後再將氫化矽置入充滿惰性氣體的反應瓶中進行分子自組裝反應,在這過程中,不可避免地,氫化矽表面會與空氣接觸,使的氫化矽在轉移的過程中會被氧化或吸附空氣中的氧氣,影響分子膜的成長。
本篇論文探討藉由兩層溶液的系統來改良分子自組裝製程,兩層溶液系統的組成是由上層的有機層與下層的水相層所組成,藉由此系統,在下層蝕刻完成的矽化氫將不必經過空氣而進入有機相溶液,進而進行自組裝分子膜反應。反應完成的自組裝分子膜藉由水滴接觸角來判斷成膜品質,而原子力顯微鏡則用來觀察分子膜表面狀態,橢圓儀測量厚度和IR來鑑定分子官能基,另外,X光光電子能譜儀可用來鑑定矽表面的氧化狀態。
我們利用octadecylthiol和octadecene來進行自組裝反應,實驗結果顯示octadecylthiol及octadecene分子膜的水滴接觸角分別達到101度及102度,表現出疏水的性質。另外透過AFM的表面鑑定,兩者在表面構形上皆呈現階梯狀的形貌,與蝕刻過的氫化矽表面有同樣的構形,不過粗度卻下降些許,顯示分子膜的存在;膜厚的部分大約在2奈米左右,而IR的官能基鑑定也證實CH3及CH2的存在,另外X光光電子能譜儀顯示C 1s的訊號,以上的資訊都顯示分子膜確實存在於氫化矽上。
另外,為了測試分子膜對氫化矽的保護效果,我們將分子膜修飾後的矽化氫置於空氣中一天到七天,然後藉由XPS觀察矽的氧化程度,結果顯示我們所修飾的分子膜有抗氧化能力。透過以上的量測和鑑定,我們可以確認利用兩層溶液的方法,可以成功的製備單層分子膜於氫化矽表面,並且達到抗氧化效果
In previous studies of SAMs on oxide-free Si(111), the SAM procedures always begin at the etching of the silicon surface; afterward, the etched silicon wafers are enclosed in reaction vase which provides inner surrounding to avoid SiOx forming while SAMs molecules react with silicon.
In this work, we utilized a two-layer system which consists of organic phase and aqueous phase to proceed the SAM process without attachment to air. And the characterization of composition of SAM was carried out with X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), water contact angle (CA), and attenuated total reflectance infrared spectroscopy (ATR-IR).
The result of contact angle shows that our SAMs possess hydrophobic property that the angle is 102゚ for octadecene (ODC) SAMs and 101゚for octadecythiol (ODT) SAMs. The AFM images show the step by step morphologies of both ODC and ODT SAMs. The XPS data show nearly no remaining silicon oxide in the Si 2p region (95-104 eV) from 1day to 7 days oxidation test.
According to these data, we successfully fabricated a monolayer on oxide-free Si(111) surface, and our strategy of one-step method can be applied on the fabrication of ODT and ODC SAMs on oxide-free Si(111) surface. The one-step method providing an oxygen free surroundings can be applied on many surface-modification manufactures of semiconductors in the future.
1 Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103-1169, doi:10.1021/cr0300789 (2005).
2 Schreiber, F. Structure and growth of self-assembling monolayers. Progress in Surface Science 65, 151-257, doi:10.1016/s0079-6816(00)00024-1.
3 Aswal, D. K., Lenfant, S., Guerin, D., Yakhmi, J. V. & Vuillaume, D. Self assembled monolayers on silicon for molecular electronics. Anal. Chim. Acta 568, 84-108, doi:10.1016/j.aca.2005.10.027 (2006).
4 Luczak, T. Comparison of electrochemical oxidation of epinephrine in the presence of interfering ascorbic and uric acids on gold electrodes modified with S-functionalized compounds and gold nanoparticles. Electrochimica Acta 54, 5863-5870, doi:10.1016/j.electacta.2009.05.047 (2009).
5 Chaki, N. K. & Vijayamohanan, K. Self-assembled monolayers as a tunable platform for biosensor applications. Biosens. Bioelectron. 17, 1-12, doi:10.1016/s0956-5663(01)00277-9 (2002).
6 Bhagirath, N., Kanhere, E. & Bhattacharya, E. MOS capacitor for simple thiol based biosensor applications. Thin Solid Films 519, 982-986, doi:10.1016/j.tsf.2010.08.028 (2010).
7 de Boer, B., Hadipour, A., Mandoc, M. M., van Woudenbergh, T. & Blom, P. W. M. Tuning of metal work functions with self-assembled monolayers. Adv. Mater. 17, 621-+, doi:10.1002/adma.200401216 (2005).
8 Smits, E. C. P. et al. Bottom-up organic integrated circuits. Nature 455, 956-959, doi:10.1038/nature07320 (2008).
9 Linford, M. R. & Chidsey, C. E. D. ALKYL MONOLAYERS COVALENTLY BONDED TO SILICON SURFACES. J. Am. Chem. Soc. 115, 12631-12632 (1993).
10 Yablonovitch, E., Allara, D. L., Chang, C. C., Gmitter, T. & Bright, T. B. UNUSUALLY LOW SURFACE-RECOMBINATION VELOCITY ON SILICON AND GERMANIUM SURFACES. Phys. Rev. Lett. 57, 249-252 (1986).
11 Morgen, P., ouml, fer, U., Wurth, W. & Umbach, E. Initial stages of oxygen adsorption on Si(111): The stable state. Physical Review B 39, 3720 (1989).
12 ouml, fer, U., Morgen, P., Wurth, W. & Umbach, E. Initial stages of oxygen adsorption on Si(111). II. The molecular precursor. Physical Review B 40, 1130 (1989).
13 Jensen, T. et al. Molecular oxygen on the Si(111)-7 <rm>x</rm> 7 surface. Physical Review B 64, 045304 (2001).
14 Chabal, Y. J. HYDROGEN VIBRATION ON SI(111)7X7 - EVIDENCE FOR A UNIQUE CHEMISORPTION SITE. Phys. Rev. Lett. 50, 1850-1853 (1983).
15 Jakob, P. & Chabal, Y. J. CHEMICAL ETCHING OF VICINAL SI(111) - DEPENDENCE OF THE SURFACE-STRUCTURE AND THE HYDROGEN TERMINATION ON THE PH OF THE ETCHING SOLUTIONS. J. Chem. Phys. 95, 2897-2909 (1991).
16 Chabal, Y. J., Higashi, G. S., Raghavachari, K. & Burrows, V. A. INFRARED-SPECTROSCOPY OF SI(111) AND SI(100) SURFACES AFTER HF TREATMENT - HYDROGEN TERMINATION AND SURFACE-MORPHOLOGY. J. Vac. Sci. Technol. A-Vac. Surf. Films 7, 2104-2109 (1989).
17 Trucks, G. W., Raghavachari, K., Higashi, G. S. & Chabal, Y. J. MECHANISM OF HF ETCHING OF SILICON SURFACES - A THEORETICAL UNDERSTANDING OF HYDROGEN PASSIVATION. Phys. Rev. Lett. 65, 504-507 (1990).
18 Watanabe, S., Nakayama, N. & Ito, T. HOMOGENEOUS HYDROGEN-TERMINATED SI(111) SURFACE FORMED USING AQUEOUS HF SOLUTION AND WATER. Appl. Phys. Lett. 59, 1458-1460 (1991).
19 Watanabe, S. & Sugita, Y. APPEARANCE OF VERTICAL DIHYDRIDES ON A SILICON SURFACE WHILE DISSOLVING THE SURFACE OXIDE LAYER IN HOT-WATER. Appl. Phys. Lett. 66, 1797-1799 (1995).
20 Watanabe, S. INFRARED INVESTIGATION OF DEUTERATED SI(111) SURFACE FORMED IN HOT HEAVY-WATER. Appl. Phys. Lett. 67, 3620-3622 (1995).
21 Fukidome, H. & Matsumura, M. Electrochemical study of atomically flattening process of silicon in 40% NH4F solution. Appl. Surf. Sci. 130, 146-150 (1998).
22 Higashi, G. S., Becker, R. S., Chabal, Y. J. & Becker, A. J. COMPARISON OF SI(111) SURFACES PREPARED USING AQUEOUS-SOLUTIONS OF NH4F VERSUS HF. Appl. Phys. Lett. 58, 1656-1658 (1991).
23 Higashi, G. S., Chabal, Y. J., Trucks, G. W. & Raghavachari, K. IDEAL HYDROGEN TERMINATION OF THE SI-(111) SURFACE. Appl. Phys. Lett. 56, 656-658 (1990).
24 Garcia, S. P., Bao, H. L. & Hines, M. A. Understanding the pH dependence of silicon etching: the importance of dissolved oxygen in buffered HF etchants. Surf. Sci. 541, 252-261, doi:10.1016/s0039-6028(03)00952-x (2003).
25 Watanabe, S., Horiuchi, K. & Ito, T. ATOMIC STEP STRUCTURE ON VICINAL H/SI(111) SURFACE FORMED BY HOT-WATER IMMERSION. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 32, 3420-3425 (1993).
26 Ubara, H., Imura, T. & Hiraki, A. FORMATION OF SI-H BONDS ON THE SURFACE OF MICROCRYSTALLINE SILICON COVERED WITH SIOX BY HF TREATMENT. Solid State Commun. 50, 673-675 (1984).
27
28 Linford, M. R., Fenter, P., Eisenberger, P. M. & Chidsey, C. E. D. ALKYL MONOLAYERS ON SILICON PREPARED FROM 1-ALKENES AND HYDROGEN-TERMINATED SILICON. J. Am. Chem. Soc. 117, 3145-3155 (1995).
29 Bansal, A. et al. Alkylation of Si surfaces using a two-step halogenation Grignard route. J. Am. Chem. Soc. 118, 7225-7226 (1996).
30 Nemanick, E. J., Hurley, P. T., Brunschwig, B. S. & Lewis, N. S. Chemical and electrical passivation of silicon (111) surfaces through functionalization with sterically hindered alkyl groups. J. Phys. Chem. B 110, 14800-14808, doi:10.1021/jp057070i (2006).
31 Boukherroub, R., Morin, S., Bensebaa, F. & Wayner, D. D. M. New synthetic routes to alkyl monolayers on the Si(111) surface. Langmuir 15, 3831-3835 (1999).
32 Fellah, S., Boukherroub, R., Ozanam, F. & Chazalviel, J. N. Hidden electrochemistry in the thermal grafting of silicon surfaces from Grignard reagents. Langmuir 20, 6359-6364, doi:10.1021/la049672j (2004).
33 Ciampi, S., Harper, J. B. & Gooding, J. J. Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: surface preparation, passivation and functionalization. Chem. Soc. Rev. 39, 2158-2183, doi:10.1039/b923890p (2010).
34 Cicero, R. L., Linford, M. R. & Chidsey, C. E. D. Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111). Langmuir 16, 5688-5695 (2000).
35 Sun, Q. Y. et al. Covalently attached monolayers on hydrogen terminated Si(100): Extremely mild attachment by visible light. Angew. Chem.-Int. Edit. 43, 1352-1355, doi:10.1002/anie.200352137 (2004).
36 Vickerman, J. C. Surface analysis: The principal techniques. (WEILY) (1997).
37 Extrand, C. W. A thermodynamic model for contact angle hysteresis. J. Colloid Interface Sci. 207, 11-19 (1998).
38 Davis, H. T. Statistical mechanics of phases, interfaces, and thin films. VCH Publishers, Inc., (1996).
39 Horr, T. J., Ralston, J. & Smart, R. S. THE USE OF CONTACT-ANGLE MEASUREMENTS TO QUANTIFY THE ADSORPTION DENSITY AND THICKNESS OF ORGANIC-MOLECULES ON HYDROPHILIC SURFACES. Colloid Surf. A-Physicochem. Eng. Asp. 97, 183-196, doi:10.1016/0927-7757(95)03090-z (1995).
40 Sato, Y. & Maeda, M. STUDY OF HF-TREATED HEAVILY-DOPED SI SURFACE USING CONTACT-ANGLE MEASUREMENTS. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 33, 6508-6513, doi:10.1143/jjap.33.6508 (1994).
41 Lou, J. L. L. J. L. et al. Preparation and Characterization of an Ordered 1-Dodecanethiol Monolayer on Bare Si(111) Surface. Langmuir 27, 3436-3441, doi:10.1021/la103585t (2011).
42 Sano, H., Ohno, K., Ichii, T., Murase, K. & Sugimura, H. Alkanethiol Self-Assembled Monolayers Formed on Silicon Substrates. Jpn. J. Appl. Phys. 49, doi:01ae0910.1143/jjap.49.01ae09 (2010).
43 Zharnikov, M., Geyer, W., Golzhauser, A., Frey, S. & Grunze, M. Modification of alkanethiolate monolayers on Au-substrate by low energy electron irradiation: Alkyl chains and the S/Au interface. PCCP Phys. Chem. Chem. Phys. 1, 3163-3171 (1999).
44 Mischki, T. K., Lopinski, G. P. & Wayner, D. D. M. Evidence for Initiation of Thermal Reactions of Alkenes with Hydrogen-Terminated Silicon by Surface-Catalyzed Thermal Decomposition of the Reactant. Langmuir 25, 5626-5630, doi:10.1021/la804210d (2009).
45 Shirahata, N. et al. Photoinduced decomposition of alkyl monolayers using 172 nm vacuum ultraviolet light. J. Vac. Sci. Technol. A 22, 1615-1619, doi:10.1116/1.1692318 (2004).
46 Yang, S. K., Peter, S. & Takoudis, C. G. FUNDAMENTALS OF 2-STEP ETCHING TECHNIQUES FOR IDEAL SILICON-HYDROGEN TERMINATION OF SILICON(111). J. Appl. Phys. 76, 4107-4112 (1994).
47 Porter, M. D., Bright, T. B., Allara, D. L. & Chidsey, C. E. D. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 109, 3559-3568, doi:10.1021/ja00246a011 (1987).
48 Buriak, J. M. Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si-C bonds. Chem. Commun., 1051-1060 (1999).
49 Stewart, M. P. & Buriak, J. M. Exciton-mediated hydrosilylation on photoluminescent nanocrystalline silicon. J. Am. Chem. Soc. 123, 7821-7830, doi:10.1021/ja011116d (2001).
50 Sun, Q. Y. et al. Covalently attached monolayers on crystalline hydrogen-terminated silicon: Extremely mild attachment by visible light. J. Am. Chem. Soc. 127, 2514-2523, doi:10.1021/ja045359s (2005).
51 Kar, S., Miramond, C. & Vuillaume, D. Properties of electronic traps at silicon/1-octadecene interfaces. Appl. Phys. Lett. 78, 1288-1290, doi:10.1063/1.1351530 (2001).
52 Sieval, A. B., Vleeming, V., Zuilhof, H. & Sudholter, E. J. R. An improved method for the preparation of organic monolayers of 1-alkenes on hydrogen-terminated silicon surfaces. Langmuir 15, 8288-8291, doi:10.1021/la9904962 (1999).