研究生: |
盧秀鳳 |
---|---|
論文名稱: |
理論探討氫化鑽石(111)表面之氣固異相反應與3-甲氨甲基-5-R-水楊醛(R=OCH3, Br)的分子內與alpha-氨基砒啶二聚物的分子間氫鍵與溶劑效應。 |
指導教授: | 孫英傑 |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 175 |
中文關鍵詞: | 氫化的鑽石(111)表面 、氫鍵 、溶劑效應 |
論文種類: | 學術論文 |
相關次數: | 點閱:245 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要 我們理論研究氫化之鑽石(111)表面之吸附氫拔取反應、吸附反應、蝕刻反應、與游移反應。我們所探討的吸附氫拔取反應用不同的自由基,諸如H、CH3、C2H、O、OH、NH2、CN、F、Cl、Br、CF3、與CCl3,我們的計算結果顯示,相較於原子氫,F、Cl、O、OH、CN、與C2H為強的拔氫劑,CH3、NH2、Br、CF3、與CCl3為弱的拔氫劑,這些自由基拔氫的能力約與其親電子性指標(electrophilicity index)相關,即親電子性指標值越大其拔氫能力越強。我們所探究的吸附反應,包括含碳核種與不含碳核種吸附基吸附在氫化之鑽石(111)表面之懸空鍵上,其吸附能的大小約與欲形成之鍵強(bond strength)相關,典型鍵強由強至弱為C-F>C-H>C-O>C-C>C-Cl>C-N,我們計算所得之吸附能大小由大至小為CN、F、H、OH、CH3、NH2、CF3、CH2F、Cl、CHF2、CH2Cl、CH2OH、CH2NH2、CCl3。由於氯原子吸附有大的立障,故不能反映出其天然鍵強較C-N強,同理甲基吸附基上之氫被取代,立障與取代基效應整體結果,可能不穩定化氫化之鑽石表面相較於甲基吸附基(adsorbate)。吸附基或吸附基上之原子或原子團被氫原子蝕刻的計算結果顯示CH3與CF3很難被原子氫拔取,吸附氯很容易被拔取,其拔取的難易次序由易至難約為Cl<H<NH2<OH<F<CH3<CF3,由吸附能與蝕刻難易的綜合結果暗示Cl、H、N、O、F物種應較難併入成長的鑽石薄膜中,在低的基材溫度下是有可能,但併入應是微量的,此與實驗的觀察是一致的。吸附原子或原子團在氫化的鑽石表面游移我們僅探究吸附氫、氟、氯在兩個懸空鍵游移,以及甲基吸附基上之氫在甲基懸空鍵與台地懸空鍵之間的轉移(標記為H/CH3),我們的計算結果顯示,受制於計算方法的選擇,但一致的結果為甲基吸附基上之氫在甲基懸空鍵與台地懸空鍵之間的轉移是容易的,僅需要吸附氫在台地上的游移所需的能障的一半,吸附氯較吸附氫在台地上的游移容易。由轉移能障與蝕刻能障及吸附氫被氫原子拔取的能障相比,鑽石(111)表面的游移反應在化學蒸鍍鑽石薄膜成長過程中,相對其他動力學過程是不重要的,此結果與其他的文獻的建議是一致的。 我們用密度泛函(density functional theory)之B3LYP方法,以及八種基底,分別為6-31+G(d,p)、6-31+G(2d,2p)、6-31+G(df,pd)、6-31+G(2df,2pd)、6-311+G(d,p)、6-311+G(2d,2p)、6-311+G(df,pd)、6-311+G(2df,2pd),探討3-dimethylaminomethyl-5-R-salicylic(R=OCH3, Br)aldehydes之分子內氫鍵異構物與用PCM(the Polarized Continuum model)方法探究這些異構物之溶劑效應。當R=OCH3時(compound 1)有八種分子內氫鍵異構物,R= Br時(compound 2)有四種分子內氫鍵異構物。我們的計算結果顯示其各各氫鍵異構物之相對能量用6-31+G(2d,2p)與6-311+G(2d,2p)基底和用6-311+G(2df,2pd)基底之計算結果接近,但考量溶劑效應用PCM方法,用6-31+G(df,pd)與6-311+G(df,pd)基底和用6-311+G(2df,2pd)基底之計算結果較接近。在真空中,我們的計算結果顯示compound 1與compound 2二者均以形成OH…O=C分子內氫鍵結構之異構物為主,但溶劑效應考量下,compound 1仍以OH…O=C分子內氫鍵結構之異構物為主,compound 2則變為以形成OH…N分子內氫鍵結構之異構物為主。由取代效應發現compound 2較compound 1此二氫鍵結構物的異同較大,但溶劑效應較能有效的穩定形成OH…N分子內氫鍵結構之異構物,此溶劑效應的不同穩定性的差異亦是compound 2較compound 1大,其競爭結果導致以形成OH…N分子內氫鍵結構之異構物為主要平衡物種。 我們用ab initio方法研究a-aminopyridine重複單元數與氫鍵二聚能的關係與溶劑效應。發現實驗觀察二聚焓與a-aminopyridine重複單元數有好的線性相關,我們的計算結果建議來自於氫鍵雙體累進之N-H…N氫鍵與單體最穩構形之累進的C-H…N氫鍵造成的。我們的計算結果顯示氯仿有足夠的能力扮演氫鍵給予者的角色,與a-aminopyridine形成氫鍵複合物,因此實驗觀察在氯仿溶劑所測之二聚焓較在環己烷中所測小許多,其原因可能來自氯仿分子與單體競爭砒啶之N,以形成氫鍵減低了二聚焓造成的。 Abstract We examined four kinetics reactions on hydrogen-terminated diamond (111) surface using ab initio calculation: 1). The hydrogen abstraction reaction by atomic hydrogen and non-hydrogen radical(CH3, C2H, O, OH, NH2, CN, F, Cl, Br, CF3, and CCl3). 2). The adsorption reaction of the carbon-containing species(CN, CH3, CH2OH, CH2NH2, CH2F, CHF2, CF3, CH2Cl, and CCl3)and non-carbon-containing species(H, F, Cl, OH, and NH2). 3). The etching reaction of the species CH3, CF3, F, Cl, OH, NH2, H from CH3, CH2F, CH2Cl, CH2OH adsorbates, respectively, F atom from CH2F, CF3 adsorbates, Cl atom from CH2Cl, CCl3 adsorbates, and NH2 from CH2NH2 adsorbate, abstracted by atomic H. 4). The migration reaction of various species(H, F, Cl)on diamond (111) surface. The calculated results of H-abstraction reaction abstracted by various radicals show that F, Cl, O, OH, CN, and C2H are much stronger abstractors while Br, NH2, CH3, CF3, and CCl3 radicals are weaker abstractors, compared with this abstraction reaction abstracted by H atoms, which is in excess in CVD environment. The energy barrier heights for these examined radicals are generally correlated well with an index of electrophilicity. The calculated adsorption energies of H, F, Cl, OH, NH2 and other carbon-containing species correlate well with typical C-H, C-F, C-Cl, C-O, C-N, and C-C bond strength. However, for fluorine or chlorine atoms, steric effect needs to be taken into consideration in rationalizing the calculated results. For OH and NH2 adsorbates, both steric and electron-donation effects make the adsorption of these two species harder, compared with CH3. The calculations gave that the order of adsorption energy in decreasing order is CN, F, H, OH, CH3, NH2, CF3, CH2F, Cl, CHF2, CH2Cl, CH2OH, CH2NH2, and CCl3. The calculation results for the abstraction of H, F, Cl, OH, and NH2 species of adsorbates abstracted by atomic H show that Cl is easier and F is harder to be removed than H. These calculated results correlate well with their bond strength with C atom. The energy barriers for this etching reaction in decreasing order is CF3, CH3, F, OH, NH2, H, Cl. These results suggest that the O, N, and F may be incorporated in diamond thin film in the diamond chemical vapor deposition growth process when non-carbon species involve in this process. For the migration of species between two neighbor dangling bond sites, the calculations for H, F, and Cl gave that the order for migration energy barriers is H>F>Cl when the HFB and B3LYP ab initio methods were used, and F>H>Cl when the MP2 method was used. All the calculated results show that chlorine atom and hydrogen atom of CH3 adsorbate transfer between chemisorbed moieties is easier than fluorine and hydrogen transfer. In addition, we examined the intra-molecular hydrogen bond interaction and the solvent effect using the polarized continuum model(PCM)in two 3-dimethylaminomethyl-5-R-sailicylic(R=OCH3, Br)aldehydes using the density functional theory(B3LYP)with various basis sets, such as 6-31+G(d,p), 6-31+G(2d,2p), 6-31+G(df,pd), 6-31+G(2df,2pd), 6-311+G(d,p), 6-311+G(2d,2p), 6-311+G(df,pd), 6-311+G(2df,2pd). The relative energies of eight conformers for R=OCH3 and of four conformers for R=Br indicate that the structures with OH…O=C intra-molecular hydrogen bond is predominant equilibrium conformers in vacuum. In chloroform solution, the OH…O=C intra-molecular hydrogen bond in compound 1 (R=OCH3) is more favorable whereas OH…N intra-molecular hydrogen bond in compound 2 (R=Br) is more predominant. This is consistent with experimental study of intra-molecular hydrogen bonds in two 3-diethylaminomethyl-5-R-salicylic(R=OCH3, Br) aldehydes in chloroform solutions. Besides, it is noted that the difference of the OH…O=C and the OH…N intra-molecular hydrogen bond strength for the compound 1 is smaller than the compound 2. Also, the calculated results show that the solvation by chloroform stabilizes the conformer with OH…N intra-molecular hydrogen bond more for the compound 2 than compound 1. Besides, we examined the inter-molecular hydrogen bond interaction of a-aminopyridine dimer and the solvent effect using ab initio calculation. According to experimental measurements, the dimerization enthalpy is linearly correlated with number of a-aminopyridine repeated units. Our calculated results suggest that this is because of formation of NH…N hydrogen bonds of dimers and CH…N hydrogen bonds of the monomers. The calculated results also suggest that the C-H bond of chloroform can be a proton donor, and is able to form hydrogen bond with the N on the pyridine ring. This may be why there is less dimerization enthalpy in chloroform than in cyclohexane observed in an experiment.
We examined four kinetics reactions on hydrogen-terminated diamond (111)
surface using ab initio calculation: 1). The hydrogen abstraction reaction by
atomic hydrogen and non-hydrogen radical(CH3, C2H, O, OH, NH2, CN, F, Cl, Br,
CF3, and CCl3). 2). The adsorption reaction of the carbon-containing species(
CN, CH3, CH2OH, CH2NH2, CH2F, CHF2, CF3, CH2Cl, and CCl3)and non-carbon-
containing species(H, F, Cl, OH, and NH2). 3). The etching reaction of the
species CH3, CF3, F, Cl, OH, NH2, H from CH3, CH2F, CH2Cl, CH2OH adsorbates,
respectively, F atom from CH2F, CF3 adsorbates, Cl atom from CH2Cl, CCl3
adsorbates, and NH2 from CH2NH2 adsorbate, abstracted by atomic H. 4). The
migration reaction of various species(H, F, Cl)on diamond (111) surface. The
calculated results of H-abstraction reaction abstracted by various radicals
show that F, Cl, O, OH, CN, and C2H are much stronger abstractors while Br,
NH2, CH3, CF3, and CCl3 radicals are weaker abstractors, compared with this
abstraction reaction abstracted by H atoms, which is in excess in CVD
environment. The energy barrier heights for these examined radicals are
generally correlated well with an index of electrophilicity. The calculated
adsorption energies of H, F, Cl, OH, NH2 and other carbon-containing species
correlate well with typical C-H, C-F, C-Cl, C-O, C-N, and C-C bond strength.
However, for fluorine or chlorine atoms, steric effect needs to be taken into
consideration in rationalizing the calculated results. For OH and NH2
adsorbates, both steric and electron-donation effects make the adsorption of
these two species harder, compared with CH3. The calculations gave that the
order of adsorption energy in decreasing order is CN, F, H, OH, CH3, NH2, CF3,
CH2F, Cl, CHF2, CH2Cl, CH2OH, CH2NH2, and CCl3. The calculation results for
the abstraction of H, F, Cl, OH, and NH2 species of adsorbates abstracted by
atomic H show that Cl is easier and F is harder to be removed than H. These
calculated results correlate well with their bond strength with C atom. The
energy barriers for this etching reaction in decreasing order is CF3, CH3, F,
OH, NH2, H, Cl. These results suggest that the O, N, and F may be incorporated
in diamond thin film in the diamond chemical vapor deposition growth process
when non-carbon species involve in this process. For the migration of species
between two neighbor dangling bond sites, the calculations for H, F, and Cl
gave that the order for migration energy barriers is H>F>Cl when the HFB and
B3LYP ab initio methods were used, and F>H>Cl when the MP2 method was used.
All the calculated results show that chlorine atom and hydrogen atom of CH3
adsorbate transfer between chemisorbed moieties is easier than fluorine and
hydrogen transfer.
In addition, we examined the intra-molecular hydrogen bond interaction and
the solvent effect using the polarized continuum model(PCM)in two 3-
dimethylaminomethyl-5-R-sailicylic(R=OCH3, Br)aldehydes using the density
functional theory(B3LYP)with various basis sets, such as 6-31+G(d,p), 6-31+G(
2d,2p), 6-31+G(df,pd), 6-31+G(2df,2pd), 6-311+G(d,p), 6-311+G(2d,2p), 6-311+G(
df,pd), 6-311+G(2df,2pd). The relative energies of eight conformers for R=
OCH3 and of four conformers for R=Br indicate that the structures with OH…O=C
intra-molecular hydrogen bond is predominant equilibrium conformers in vacuum.
In chloroform solution, the OH…O=C intra-molecular hydrogen bond in compound
1 (R=OCH3) is more favorable whereas OH…N intra-molecular hydrogen bond in
compound 2 (R=Br) is more predominant. This is consistent with experimental
study of intra-molecular hydrogen bonds in two 3-diethylaminomethyl-5-R-
salicylic(R=OCH3, Br) aldehydes in chloroform solutions. Besides, it is
noted that the difference of the OH…O=C and the OH…N intra-molecular
hydrogen bond strength for the compound 1 is smaller than the compound 2.
Also, the calculated results show that the solvation by chloroform stabilizes
the conformer with OH…N intra-molecular hydrogen bond more for the compound 2
than compound 1.
Besides, we examined the inter-molecular hydrogen bond interaction of a-
aminopyridine dimer and the solvent effect using ab initio calculation.
According to experimental measurements, the dimerization enthalpy is linearly
correlated with number of a-aminopyridine repeated units. Our calculated
results suggest that this is because of formation of NH…N hydrogen bonds of
dimers and CH…N hydrogen bonds of the monomers. The calculated results also
suggest that the C-H bond of chloroform can be a proton donor, and is able to
form hydrogen bond with the N on the pyridine ring. This may be why there is
less dimerization enthalpy in chloroform than in cyclohexane observed in an
experiment.
1. Ashfold, M. N. R., May, P. W., and Everitt, N. M. Chem. Soc. Rev. 1994, 21-
30.
2. for example. (a) Geis, M. W. and Angus, J. C. Sciencific American, 1992,
84. (b) Kalish, R. Carbon, 1999, 37, 781. (c) Kalish, R. Diamond Rel. Mater.
2001, 10, 1749.
3. Busch, J. V., Dismukes, J. P., Nallicheri, V., and Walton, K. R.
Applications of Diamond Films and Related Materials, edit by Tzeng, Y.,
Yoshikawa, M., Murakawa, M. and Feldman, A. © Elsevier Science Publishers
B. V., 1991, p623.
4. Angus, J. C. and Hayman, C. C. Science, 1988, 913.
5. Celii, F. G. and Butler, J. E. Annu. Rev. Phys. Chem. 1991, 42, 643.
6. Spear, K. E. and Frenklach, M. Pure & Appl. Chem. 1994, 66, 1773.
7. Busmann, H.-G. and Hertel, I. V. Carbon, 1998, 36, 391.
8. Liu, A. Y., Hernley, R. J. Science, 1989, 245, 841.
9. for review, Muhl, S., Méndez, J. M. Diamond Rel. Mater. 1999, 8,
1809.
10. (a) Sathekge, M.N., Lowther, J.E., Diamond Relat. Mater., 1995, 4, 145. (
b) Jackman, R. B., Baral, B., Kingsley, C. R., Foord, J. S., Diamond Relat.
Mater., 1996, 5, 378. (c) Tsubta, T., Fukui, T., Saito, T., Kusakabe, K.,
Morooka, S., Maeda, H., Diamond Relat. Mater., 2000, 9, 1362.
11. (a) Bohr, S., Haubner, R., Lux, B., Diamond Relat. Mater. 1995, 4, 133. (
b) Tsang, R.S., May, P.W., Ashfold, M.N.R., Rosser, K.N., Diamond Relat.
Mater. 1998, 7, 1651.
12. Sakaguchi, I., N.-Gamo, M., Kikuchi, Y., Yasu, E., Haneda, H., Phys. Rev.
B, 1999-II, 60, R2139.
13. Schmidt, I., Hentschel, F., Benndorf, C., Diamond Relat. Mater. 1996, 5,
1318.
14. Hentschel, F., Schmidt, I., Benndorf, C. Thin Solid Films, 1996, 290-291,
196.
15. Schmidt, I.,Hentschel, F., Benndorf, C. Solid State Ionic, 1997, 101-103,
97.
16. Patterson, D. E., Chu, C. J., Bai, B. J., Komplin, N. J., Hauge, R. H.,
and Margrave, J. L. Applications of Diamond Films and Related Materials,
edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., Feldman, A., Elsevier
Science Publishers B. V., 1991, 569.
17. Hong, F. C.-N., Liang, G.-T., Chang, D., Yu, S.-C. Applications of Diamond
Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M.,
Feldman, A., Elsevier Science Publishers B. V., 1991, 577.
18. Liang, G.-T. and Hong, F. C.-N. J. Mater. Res., 1998, 13, 3114.
19. Wu, J.-J. and Hong, F. C.-N. J. Mater. Res., 1998, 13, 2498.
20. Hong, F. C.-N., Liang, G.-T., Wu, J.-J., Chang, D., and Hsieh, J.-C.,
Appl. Phys. Lett., 1993, 63, 3149.
21. Wu, J.-J. and Hong, F. C.-N., J. Appl. Phys., 1997, 81, 3647.
22. Wu, J.-J. and Hong, F. C.-N., J. Appl. Phys., 1997, 81, 3652.
23. Horii, N., Suzuki, N., Itoh, K.-i., Kotaki, T., Matsumoto, O., Diamond
Relat. Mater., 1997, 6, 1874.
24. Schmidt, Benndorf, C., Diamond Relat. Mater., 1998, 7, 266.
25. Schmidt, Benndorf, C., Diamond Relat. Mater., 1997, 6, 964.
26. Schmidt, I., Benndorf, C., Diamond Relat. Mater., 1999, 8, 231.
27. Proffitt, S., Thompson, C. H. B., Gutierrez-Sosa, A., Paris, N., Singh, N.
K., Jackman, R. ., Foord, J. S., Diamond Relat. Mater., 2000, 9, 246.
28. Nagano, T. and Shibata, N. Jpn. J. Appl. Phys., 1993, 32, 5067.
29. Patterson, D. E., Bai, B. J., Chu, C. J., Hauge, R. H., Margrave, in: New
Diamond Science and Technology, 1991, Materials Research Society, 1991, p. 433.
30. Schmidt, Benndorf, C., Diamond Relat. Mater., 1998, 7, 266.
31. Wu, J.-J., Yeh, S.-H., Su, C-T, and Hong, F. C.-N., Appl. Phys. Lett.,
1996, 68, 3254.
32. Liou, Y., Weimer, R., Knight, D., and Messier, R. Appl. Phys. Lett. 1990,
56, 437.
33. Wan, Y.-Z., Zhang, D.W., Liu, Z.-J., Wang, J.-T., Appl. Phys. A, 1998, 67,
225.
34. Ruan, J. and Choyke, W. J. Appl. Phys. Lett. 1993, 62, 1379.
35. Muranaka, Y., Yamashita, H., and Miyadera, H. Diamond Relat. Mater. 1994,
3, 313.
36. Stiegler, J., Lang, T., Nygård-Ferguson, M., von Kaenel, Y., and
Blank, E. Diamond Relat. Mater. 1996, 5, 226.
37. Li Tolt, Z., Heatherly, L., and Clausing, R. E. J. Mater. Res. 1997, 12,
1344.
38. Mucha, J. A., Flamm, D. L., and Ibbotson, D. E. J. Appl. Phys. 1989, 65,
3448.
39. Kapoor, S., Kelly, M. A., and Hagström, S. B. J. Appl. Phys. 1995,
77, 6267.
40. Okano, K., Koizumi, S., Silva, S. R. P., and Amaratunga, G. A. J. Nature
1996, 381, 140.
41. Zhang, G.F., Geng, D.S., Yang, Z.J. Surf. Coat. Technol. 1999, 122, 268.
42. Samlenski, R., Haug, C., and Brenn, R. Appl. Phys. Lett. 1995, 67, 2798.
43. Müller-Sebert, W., Wörner, E., Fuchs, F., Wild, C., and Koidl P.
Appl. Phys. Lett. 1996, 68, 759.
44. Atakan, B., Beuger, M., and Kohse-Höinghaus,K. Phys. Chem. Chem.
Phys., 1999, 1, 705.
45. Jin, S. and Moustakas, T. D. Appl. Phys. Lett., 1994, 65, 403.
46. Schermer, J.J. and de Theije, F.K. Diamond Relat. Mater. 1999, 8, 2127.
47. Haubner, R., Bohr, S., Lux, B. Diamond Relat. Mater. 1999, 8, 171.
48. (a) Yarbrough, W. A., Applications of Diamond Films and Related Materials,
edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., Feldman, A., Elsevier
Science Publishers B. V., 1991, p25. (b) Robertson, J. in: Clausing, R.E.,
Horton, L.L., Angus, J.C., Koidl(Eds.), Diamond-like Films and Coatings,
Plenum Press, New York, 1991, p37. (c) Huang, D., Frenklach, M., Maroncelli,
M., J. Phys. Chem., 1988, 92, 6379. (d) Frenklach, M., Spear, K. E., J.
Mater. Res., 1988, 3, 133. (e) Vakil, H.B., Banholzer, W. F., Kehl, R. J.,
Spiro, C. L., Mater. Res. Bull. 1989, 24, 733. (f) Belton, D. N., Harris, S.
J., J. Chem. Phys. 1992, 96, 2371. (g) Frenklach, M., J. Chem. Phys. 1992,
97, 5794.
49. Kawarada, H., Surf. Sci. Reports, 1996, 26, 205.
50. Ando, T., Yamamoto, K., Matsuzawa, M., Takamatsu, Y., Kawasaki, S., Okino,
F., Touhra, H., Kamo, M., Sato, Y., Diamond Relat. Mater., 1996, 5, 1021.
51. Ando, T., Nishitani-Gamo, M., Rawles, R. E., Yamamoto, K., Kamo, M., Sato,
Y., Diamond Relat. Mater., 1996, 5, 1136.
52. Sun, B., Zhang, X., Zhang, Q., and Lin, Z. J. Appl. Phys. 1993, 73, 4614.
53. for example, (a) Chen, C.-F., Hong, T.-M., Chen, S.-H., J. Appl. Phys.
1993, 74, 4483. (b) May, P.W., Burridge, P. R., Rego, C.A., Tsang, R.S.,
Ashfold, M.N.R., Rosser, Tanner, R.E., Cherns, D., Vincent, R., Diamond Relat.
Mater., 1996, 5, 354. (c) Rego, C. A., Tsang, R. S., May, P. W., Ashfold, M.
N. R., and Rosser, K. N., J. Appl. Phys., 1996, 79, 7264. (d) Komarov, S.F.,
Lee, J.-J., Hudson, J.B., D’Evelyn, M.P., Diamond Relat. Mater., 1998, 7,
1087. (e) Scimidt, I., Benndorf, C., Joeris, P., Diamond Relat. Mater., 1995,
4, 725. (f) Ferreira, N.G., Corat, E.J., Trava-Airoldi, V.J., Leite, N.F.,
Diamond Relat. Mater., 1998, 7, 272. (g) Tsang, R.S., Rego, C.A., May, P.W.,
Thumim, J., Ashfold, M.N.R., Rosser, K.N., Younes, C.M., Holt, M.J., Diamond
Relat. Mater., 1996, 5, 359.
54. (a) Hukka, T. I., Pakkanen, T. A., D’Evelyn, M. P., Surf. Sci., 1996,
359, 213. (b) Gat, R., Hukka, T.I., Rawles, R.E., D’Evelyn, M.P., in: 36th
Annual Technical Conference Proceedings, 1993, Society of Vacuum Coaters,
1993, p. 353.
55. Gaussian 98, Revision A.7, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G.
E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery,
Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A.
Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C.
Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J.
L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople,
Gaussian, Inc., Pittsburgh PA, 1998.
56. Koleske, D. D., Gates, S. M., Thoms, B. D., Russell Jr., J. N., and
Butler, J. E., J. Chem. Phys., 1995, 102, 992.
57. Thoms, B. D., Russell Jr., J. N., Pehrsson, P. E., and Butler, J. E., J.
Chem. Phys., 1994, 100, 8425.
58. Boys, S. F., Bernardi, F. Mol. Phys. 1970, 19. 553.
59. (a) Skokov, S. and Bowman, J. M., J. Chem. Phys., 2000, 113, 779. (b)
Brown, R. C., Cramer, C. J., and Roberts, J. T. J. Phys. Chem. B 1997, 101,
9574. (c) Huang, D., Frenklach, M., Maroncelli, M. J. Phys. Chem. 1988, 92,
6379. (d) Chang, X. Y., Perry, M., Peploski, J., Thompson, D. L., and Raff,
L. M. J. Chem. Phys. 1993, 99, 4748. (e) Page, M. and Brenner, D. W. J. Am.
Chem. Soc. 1991, 113, 3270. (f) Chang, X. Y., Thompson, D. L., and Raff, L.
M. J. Phys. Chem. 1993, 97, 10112.
60. (a) Jursic, B. S., Chem. Phys. Lett., 1997, 264, 113. (b) Jursic, B. S.,
Int. J. Quantum Chem., 1997, 65, 75.
61. Becke, A. D., Phys. Rev. A, 1988, 38, 3098.
62. Larsson, K., Lunell, S., Carlsson, J.-O., Phys. Rev. B, 1993-II, 48, 2666.
63. Basch H., and Hoz, S. J. Phys.Chem. A 1997, 101, 4416.
64. Parr, R. G., Szentpaly, L. v., Liu, S. J., J. Am. Chem. Soc., 1999, 121,
1922.
65. (a) Roberts, B. P. and Stell, A. J., J. Chem. Soc. Perkin Trans. 2, 1994,
2155. (b) Roberts, B. P., J. Chem. Soc. Perkin Trans. 2, 1996, 2719. (c)
Zavitsas, A. A., J. Chem. Soc. Perkin Trans. 2, 1994, 391.
66. Frenklach, M., in: Proc. 2nd Int. Symp. On Diamond Materials, 1991,
Electrochemical Society, Pennington, 1991, p. 142.
67. Komplin, N. J., Bai, B. J., Chu, C. J., Margrave, J. L., Hauge, R. H. in :
Proc. of the 3rd Int. Symp. On Diamond Materials, Honolulu, 1993,
Electrochemical Society, Pennington, 1993, p. 385.
68. Badzian, A. and Badzian, T. Appl. Phys. Lett. 1993, 62, 3432.
69. Bohr, S., Haubner, R., and Lux, B. Appl. Phys. Lett. 1996, 68, 1075.
70. Itoh, K.-i., Ohmachi, S., Aida, H., Matsumoto, O., Thin Solid Films 1999,
345, 50.
71. Inorganic Chemistry, Table 2.5
72. (a) Larsson, K., Lunell, S., Diamond Relat. Mater., 1998, 7, 1138. (b)
Larsson, K., Carlsson, J.-O., J. Phys. Chem. B, 1999, 103, 2735.
73. Freedman, A. and Stinespring, C. D., Appl. Phys. Lett., 1990, 57, 1194.
74. Freedman, A., J. Appl. Phys., 1994, 75, 3112.
75. Bai., B. J., Chu, C. J., Patterson, D. E., Hauge, R. H., J. Mater. Res.,
1993, 8, 233.
76. Ando, T., Nishitani-Gamo, M., Rawles, R. E., Yamamoto, K., Kamo, M., Sato,
Y., Diamond Relat. Mater., 1996, 5, 1136.
77. Grannen, K. J., Tsu, D. V., Meilunas, R. J., and Chang, R. P. H., Appl.
Phys. Lett., 1991, 59, 745.
78. Chang, X. Y., Thompson, D. L., and Raff., L. M., J. Chem. Phys., 1994,
100, 1765.
79. Larsson, K. and Carlsson, J.-O., Phys. Rev. B, 1999-II, 59, 8315.
80. Ohtake, N.and Yoshikawa, M., Jpn. J. Appl. Phys., 1993, 32, 2067.
1. Koll, A., Rospenk, M., Sobczyk, L., Glowiak, T., Can. J. Chem., 1986, 64,
1850.
2. Rospenk, M., Koll, A., Sobczyk, L., Chem. Phys. Lett., 1996, 26, 283.
3. Brzezinski, B., Maciejewska, H., Zundel, G., Krämer, R., J. Phys.
Chem., 1990, 94, 528.
4. Brzezinski, B., Zundel, G., Krämer, R. J. Mol. Struct. 1988, 189, 243.
5. Brycki, B., Maciejewska, H., Brzezinski, B., Zundel, G., J. Mol. Struct.,
1991, 246, 61.
6. Brzezinski, B., Radziejewski, P., Olejnik, J., Zundel, G. J. Mol. Struct.,
1994, 323, 71.
7. Brzezinski, B., Radziejewski, P., Rabold, A., Zundel, G. J. Mol. Struct.,
1995, 355, 185.
8. Brzezinski, B., Urjasz, H., Zundel, G., Bartel, F. J. Mol. Struct., 1997,
435, 59.
9. Brzezinski, B., Wojciechowski, G., Urjasz, H., Zundel, G. J. Mol. Struct.,
1998, 470, 335.
10. Brzezinski, B., Denisov, G.S., Golubiev, N.S.., Smirnov, S.N. J. Mol.
Struct., 1992, 267, 383.
11. Szady-Chelmieniecka, A., Rozwadowski, Z., Dziembowska, T., Grech, E.,
Wojciechowski, G., Brzezinski, B., J. Mol. Struct., 2000, 520, 39.
12. Cossi, M., Barone, V., Cammi, R., and Tomasi, J., Chem. Phys. Lett., 1996,
255, 327.
13. Barone, V., Cossi, M., Mennucci, B., and Tomasi, J., J. Chem. Phys., 1997,
107, 3210.
14. Gaussian 98, Revision A.7, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G.
E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery,
Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A.
Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C.
Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J.
L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople,
Gaussian, Inc., Pittsburgh PA, 1998.
15. March, J. Advanced Organic Chemistry, Reaction, Mechanisms, and Structure,
Wiley-Interscience Publication, 4th, 1992, p. 280, TABLE 9.4.
16. March, J. Advanced Organic Chemistry, Reactions, Mechanisms, and
Structure; Wiley: New York, 1992, Table 8.1.
1. Man-kit Leung, Ashis B. Mandal, Chih-Chieh Wang, Gene-Hsiang Lee, Shie-Ming
Peng, Hsing-Ling Cheng, Guor-Rong Her, Ito Chao, Hsiu-feng Lu, Ying-Chieh Sun,
Mei-Ying Shiao, Pi-Tai Chou, submitted to J. Am. Chem. Soc.
2. March, J. Advanced Organic Chemistry, Reactions, Mechanisms, and Structure;
Wiley: New York, 1992, p78.
3. Pawelka, Z., Koll, A., Zeegers-Huyskens, Th. J. Mol. Struct. 2001, 597, 57-
66.
4. Desiraju, G. R. J. Chem. Soc. Chem. Commun. 1989, 179.
5. Desiraju, G. R. Acc. Chem. Res. 1991, 24, 290-296.
6. Steiner, T. Angew. Chem. Int. Ed. 2002, 41, 48.
7. Jemmis, E. D., Giju, K. T., Sundararajan, K., Sankaran, K., Vidya, V.,
Viswanathan, K. S., Leszczynski, J. J. Mol. Struct. 1999, 510, 56-98.
8. Wiley, G. R. and Miller, S. I. J. Am. Chem. Soc. 1972, 94, 3287-3293.
9. Hobza, P. and Havlas, Z. Chem. Rev. 2000, 100, 4253-4264.
10. Lu, H.-f., Tsai, C., Chao, I., unpublished results.
11. CEP-31G*:Stevens/Basch/Krauss ECP split valance with polarization
functions. Stevens, W., Basch, H., and Krauss, J., J. Chem. Phys., 1984, 81,
6026.
12. MIDI-X:MIDI! of Truhlar and coworkers. Easton, R. E., Giesen, D. J.,
Welch, A., Cramer, C. J., and Truhlar, D. G., Theor. Chim. Acta, 1996, 93, 281.
13. LanL2DZ:D95 on first row, Los Alamos ECP plus DZ on Na-Bi. Hay, P. J. and
Wadt, W. R. J. Chem. Phys. 1985, 82, 270.