簡易檢索 / 詳目顯示

研究生: 黃雅彬
Ya-Pin Huang
論文名稱: 學生對國中自然科教科書不同知識表徵理解之研究
A study of students' comprehension of science knowledge representation in junior high school science textbooks
指導教授: 林陳涌
Lin, Chen-Yung
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 202
中文關鍵詞: 知識表徵課文閱讀理解心智模型
英文關鍵詞: knowledge representation, reading comprehension of text, mental model
論文種類: 學術論文
相關次數: 點閱:173下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是在探討現行國中自然與生活科技教科書知識表徵分佈的情形,以及學生對這些不同知識表徵的呈現,其課文閱讀理解的情形又是如何,是否會有不同的影響。根據研究的目的,共分為兩階段來進行,第一階段是內容分析,本研究依據Paivio的主張,將知識表徵分成「語文表徵」和「視覺表徵」兩大類,而「語文表徵」又細分為概念陳述、例子(正向和負向)和類比,「視覺表徵」則分成示意圖、實物圖、類比和表格,接著,再針對國中自然與生活科技教科書中生物知識的部分作知識表徵的分析;第二階段是依據第一階段的分析結果設計問卷,讓學生閱讀以不同知識表徵呈現的文本之後,詢問其理解的情形,接著,抽選學生進行個別晤談,以期瞭解學生對於使用不同知識表徵文本的閱讀的歷程以及可能產生異同的因素。
    研究的第一階段主要是以三個版本的國中自然與生活科技教科書生物知識中的「循環系統」、「神經系統」和「消化系統」為分析的對象,第二階段則是以抽取總共290位學生來進行施測。關於教科書分析方面,研究結果指出,各版本的概念陳述表徵佔了大約六成至七成,其餘的三成至四成當中,以視覺表徵中的示意圖以及語文表徵的正向例子為主。不管是哪一個版本,語文表徵的負向例子都甚為缺乏。將生物知識予以分類並個別分析,發現功能性知識所使用的知識表徵種類較構造性知識為多。
    關於學生的課文閱讀理解方面,經由第二階段的研究結果發現,文本之中加入視覺表徵有利於學生的課文閱讀理解,對於閱讀理解能力較低的學生,視覺表徵可以幫助他們心智模型的建立,對閱讀理解能力較高的學生,則有助於修正或增強由閱讀語文表徵所形成的心智模型;若只閱讀語文表徵,增加例子或類比表徵,因為閱讀理解能力高的學生能推理出這些表徵和概念陳述表徵之間的關係,所以有助於他們的理解,對於低閱讀理解能力的學生來說,他們能夠裡例子或類比表徵,但無法和概念陳述表徵相連結;至於視覺表徵內的比較中發現,文本中增加示意圖比加入實物圖也有利於學生的理解。藉由本研究的結果可提供教材編寫、教師教學時的參考。

    The purposes of this study were to explore : (1) the distribution of any knowledge representation in science textbooks, and (2) student reading comprehension while reading text that uses different knowledge representation. According to the purposes mentioned above, the research was divided into two steps.
    The first step involved a content analysis. The knowledge representations were divided into two categories: verbal representation, visual representation. The verbal knowledge representation component contained three parts. They were conceptual description, examples--both positive and negative--and analogies. The visual representation component contained four parts. They were making diagrams, pictures, analogies and charts. Then biological knowledge in textbooks was analyzed.
    In the second step, a questionnaire was distributed and collected and interviews were conducted in order to explore student reading comprehension after they read different texts having different knowledge representation.
    With regard to the content analysis, three biological topics were analyzed in three separate textbooks. These topics included the circulatory system, the nervous system, and the digestive system. It was found that there was a 60-70 percent knowledge representation of conceptual description in any textbook. The remaining 30-40 percent were primarily diagrams of visual representation and positive examples of verbal representation. Regardless of which textbook, all three contained very few verbal examples of negative verbal representation. Conversely, there was more varied knowledge representation in functional knowledge than in structural knowledge.
    The findings for the second step showed that most students had more comprehension when there was visual representation. For low reading ability students, visual representation helped them successfully construct mental models. For students with high reading abilities, visual representation helped them further develop and/or reinforce mental models. When only reading verbal representation were added to examples or analogies, high reading ability students benefited, but low reading ability students did not.
    Lastly, students had higher text comprehension when they were shown diagrams instead of pictures. The result of this study could provide helpful suggestions for teachers and textbook authors.

    目錄次……………………………………………………………………Ⅰ 表次………………………………………………………………………Ⅲ 圖次………………………………………………………………………Ⅵ 第一章 緒論………………………………………………………………1 第一節 研究背景與重要性……………………………………………1 第二節 研究目的與待答問題…………………………………………5 第三節 名詞釋義………………………………………………………5 第四節 研究限制………………………………………………………7 第二章 文獻探討…………………………………………………………8 第一節 學生的科學學習………………………………………………8 第二節 知識表徵 ……………………………………………………15 第三節 閱讀理解的歷程 ……………………………………………24 第四節 科學文章的學習 ……………………………………………26 第三章 研究方法 ………………………………………………………33 第一節 研究對象 ……………………………………………………33 第二節 研究工具 ……………………………………………………35 第三節 研究設計與流程 ……………………………………………39 第四章 研究結果與討論 ………………………………………………49 第一節 教科書知識表徵的分佈情形 ………………………………49 第二節 學生對語文表徵與增加視覺表徵理解的分析 ……………72 第三節 學生對各種語文表徵理解的分析 …………………………94 第四節 學生對各種視覺表徵理解的分析…………………………121 第五章 結論與建議……………………………………………………129 第一節 結論…………………………………………………………129 第二節 建議…………………………………………………………137 參考文獻 ………………………………………………………………141 附錄 ……………………………………………………………………149 附錄一 教科書知識組成分析表………………………………………149 附錄二 知識表徵分析表………………………………………………151 附錄三 題型—題號分配表……………………………………………153 附錄四 課文知識表徵理解問卷………………………………………155 附錄五 閱讀理解困難篩選測驗………………………………………199 表次 表3-1 教科書分析的版本及單元………………………………………34 表3-2 問卷施測的樣本組成……………………………………………35 表3-3 分析單元的主概念………………………………………………40 表4-1-1 A版本整體內容各項知識表徵次數分配表 ………………50 表4-1-2 B版本整體內容各項知識表徵次數分配表 ………………52 表4-1-3 C版本整體內容各項知識表徵次數分配表 ………………54 表4-1-4 A版本構造性知識各項知識表徵次數分配表 ……………58 表4-1-5 B版本構造性知識各項知識表徵次數分配表 ……………60 表4-1-6 C版本構造性知識各項知識表徵次數分配表 ……………62 表4-1-7 A版本功能性知識各項知識表徵次數分配表 ……………65 表4-1-8 B版本功能性知識各項知識表徵次數分配表 ……………67 表4-1-9 C版本功能性知識各項知識表徵次數分配表 ……………69 表4-2-1 全體學生對語文表徵與增加靜態圖片課文閱讀理解的比較 ………………………………………………………………………73 表4-2-2 不同知識類別的語文表徵與增加靜態圖片課文閱讀理解之比較 ……………………………………………………………………73 表4-2-3 學生自行比較語文表徵和增加靜態圖片表徵之反應情況表 ………74 表4-2-4 全體學生對語文表徵與增加流程圖課文閱讀理解的比較 ………………………………………………………………………77 表4-2-5 不同知識類別的語文表徵與增加流程圖課文閱讀理解之比較 ………………………………………………………………………78 表4-2-6 學生自行比較語文表徵和增加流程圖表徵之反應情況表 …………78 表4-2-7 全體學生對語文表徵與增加表格知識表徵課文閱讀理解的比較 ……………………………………………………………………81 表4-2-8 學生自行比較語文表徵和增加表格知識表徵之反應情況表 ………82 表4-2-9 閱讀能力各組學生對語文表徵與增加視覺表徵閱讀理解的比較 …85 表4-2-10 閱讀能力各組學生對語文表徵的課文閱讀理解之變異數分析摘要表 ………………………………………………………………86 表4-2-11 表4-2-10資料的薛費氏法事後比較………………………86 表4-2-12 閱讀能力各組學生對增加視覺表徵的課文閱讀理解之變異數分析摘要表 …………………………………………………………88 表4-2-13 表4-2-12資料的薛費氏法事後比較 ……………………88 表4-2-14 閱讀能力各組學生在語文表徵及增加視覺表徵課文閱讀理解的差異(增加視覺表徵-語文表徵)之變異數分析摘要表 ……88 表4-2-15 閱讀能力各組學生在不同生物知識分類上對於語文表徵及增加視覺表徵課文閱讀理解情況之比較 ……………………………93 表4-3-1 全體學生對概念陳述與增加例子知識表徵課文閱讀理解的比較 …95 表4-3-2 不同知識類別的概念陳述與增加例子知識表徵課文閱讀理解之比較 ………………………………………………………………95 表4-3-3 概念陳述與不同類別的例子知識表徵課文閱讀理解之比較 ………95 表4-3-4 學生自行比較概念陳述增加和例子知識表徵之反應情況表 ………97 表4-3-5 全體學生對概念陳述與增加類比知識表徵課文閱讀理解的比較 …100 表4-3-6 不同知識類別的概念陳述與增加類比知識表徵課文閱讀理解之比較 ……………………………………………………………101 表4-3-7 學生自行比較構造性知識之概念陳述和增加類比知識表徵之反應情況表…………………………………………………………102 表4-3-8 閱讀能力各組學生對概念陳述表徵與增加例子知識表徵課文閱讀理解的比較……………………………………………………105 表4-3-9 閱讀能力各組學生對概念陳述表徵的課文閱讀理解(和增加例子表徵比較的文本)之變異數分析摘要表……………………105 表4-3-10 表4-3-9資料的薛費氏法事後比較………………………105 表3-2-11 閱讀能力各組學生對增加例子表徵的課文閱讀理解之變異數分析摘要表…………………………………………………………108 表4-3-12 表4-3-11資料的薛費氏法事後比較………………………108 表4-3-13 閱讀能力各組學生在概念陳述表徵及增加例子表徵課文閱讀理解的差異(增加例子表徵-概念陳述表徵)之變異數分析摘要表…………109 表4-3-14 閱讀能力各組學生概念陳述與增加類比表徵課文閱讀理解的情形…………………………………………………………………113 表4-3-15 閱讀能力各組學生對概念陳述表徵的課文閱讀理解(和增加例子表徵比較的文本)之變異數分析摘要表……………………113 表4-3-16 表4-3-15資料的薛費氏法事後比較……………………114 表4-3-17 閱讀能力各組學生對增加類比表徵的課文閱讀理解之變異數分析摘要表…………………………………………………………114 表4-3-18 表4-3-17資料的薛費氏法事後比較………………………115 表4-3-19 構造性知識方面閱讀能力各組學生概念陳述與增加類比表徵課文閱讀理解的情形………………………………………………115 表4-3-20 功能性知識方面閱讀能力各組學生概念陳述與增加類比表徵課文閱讀理解的情形………………………………………………116 表4-4-1 全體學生對實物圖與示意圖知識表徵課文閱讀理解的比較 ………122 表4-4-2 不同知識類別的實物圖與示意圖知識表徵課文閱讀理解之比較 …122 表4-4-3 學生自行比較實物圖和示意圖知識表徵之反應情況表………………………………………………………………………123 圖次 圖2-1 訊息處理模式……………………………………………………10 圖2-2 神經網路模式……………………………………………………11 圖2-3 形成模式的學習模式……………………………………………14 圖2-4 知識表徵的分類…………………………………………………17 圖2-5 現象、心智模式和表現模式的關係圖…………………………19 圖2-6 二元編碼模式……………………………………………………20 圖2-7 圖片真實性和學習效果關係圖…………………………………22 圖2-8 影響科學文本閱讀理解的因素及彼此關係圖…………………31 圖3-1 研究流程圖………………………………………………………48 圖4-1-1 A版本整體內容各項知識表徵所佔百分比…………………51 圖4-1-2 B版本整體內容各項知識表徵所佔百分比…………………53 圖4-1-3 C版本整體內容各項知識表徵所佔百分比…………………55 圖4-1-4 A版本構造性知識各項知識表徵所佔百分比………………58 圖4-1-5 B版本構造性知識各項知識表徵所佔百分比………………60 圖4-1-6 C版本構造性知識各項知識表徵所佔百分比………………62 圖4-1-7 A版本功能性知識各項知識表徵所佔百分比………………65 圖4-1-8 B版本功能性知識各項知識表徵所佔百分比………………67 圖4-1-9 C版本功能性知識各項知識表徵所佔百分比………………69

    中文部分

    王靜如(2003,8月):生物運輸概念研究:課本與教學的影響。論文發表於科教處學術研討會。高雄市:國科會科教處。
    沈鴻明和蔡長添(1996):國中學生神經系統之概念發展。科學教育, 7, 1-20。
    李秀娟、張永達和黃達三(1998):概念圖應用於國中生物教材之分析與評論—以神經系統為例。科學教育月刊, 213, 14-26。
    林清山(1992):教育心理學—認知取向。台北市:遠流出版社。
    林顯輝和許國忠(1998):國小自然科教科書評鑑架構之探討。屏師科學教育, 7, 22-32。
    周玉真譯(1999):如何進行教室觀察。台北市:五南出版社。
    柯華崴(1999):閱讀理解困難篩選測驗。中國測驗學會測驗年刊, 46(2), 1-11。
    洪儷瑜(1997):國小國語語文低成就學生之視知覺能力研究。特殊教育研究學刊, 86(15), 275-292。
    洪碧霞、邱上真、葉千綺和林素微(2000):國小學童語文能力成長組型之探討。中國測驗學會測驗年刊, 47(1), 1-25。
    張春興(1997):教育心理學—三化取向的理論與實踐。台北市:東華書局。
    張欣怡(1997):地球科學不同課文表徵教材對學習表現的研究。台北市:國立台灣師範大學博士論文(未出版)。
    許良榮(1996):圖形與科學課文學習關係的探討。教育研究資訊, 4(4), 121-131。
    許良榮(1997):科學課文結構對於科學學習的影響。台北市:國立台灣師範大學博士論文(未出版)。
    郭生玉(2001):心理與教育研究法。台北:精華書局。
    黃秀英(1999):國中生物科文本調整與學生閱讀理解之研究。高雄市:國立高雄師範大學碩士論文(未出版)。
    黃宣範(2002):語言、意義與認知。語言與科學學習研討會, 2002年11月22日~11月23日。台北市:國立台灣師範大學科學教育研究所。
    楊牧真(1997):圖形表徵與文字表徵之腦側化。應用心理學報, 6, 119-135。
    楊國樞、文崇一、吳聰賢和李亦園主編(2001):社會及行為科學研究法。台北市:東華書局。
    劉嘉茹(2000):以研究綱領與本體分類論的觀點探究概念改變機制之研究。台北市:國立台灣師範大學博士論文(未出版)。
    鄭昭明(1994):認知心理學。台北市:桂冠書局。
    潘明宏和陳志瑋譯(2003):社會科學研究方法。台北市:韋伯文化。
    霍秉坤和黃顯華(1995):從認知心理學的角度看教科書之編定。教育學報, 23(2), 27-49。
    藍嘉淑(2000):圖片在國中生物科教學的角色及其對學生圖片理解之影響。高雄市:國立高雄師範大學碩士論文(未出版)。

    西文部分

    Alessi, S. M., & Trollip, S. R. (Eds.) (2001). Multimedia for learning: Methods and development (3rd ed.). Boston: Allyn and Bacon.

    Alessi, S. M. (1988). Fidelity in the design of instructional simulations. Journal of Computer Based Instruction, 15(2), 40-47.

    Alexander, P. A., & Kulikowich, J. M. (1994). Learning form physics text: A synthesis of recent research. Journal of Research in Science Teaching, 31(9), 895-911.

    Aleixandre, M. P. J., Amir, R., Brody, M. J., Tamir, P., & Tomkiewicz, W. (1996). The nature of knowledge in biology and its implications for teaching and learning. In K. M. Fisher, & M. R. Kibby (Eds.), Knowledge acquisition, organization, and use in biology (pp.1-24). New York: Springer-Verlag Berlin Heidelberg.

    Anderson, J. R. (1983). The architecture of cognition. Cambridge, Mass: Harvard University Press.

    Armbruster, B. B. (1991). Framing: A technique for improving learning form science text. In C. M. Santa & D. E. Alvermann (Eds.), Science learning: Processes and application (pp.104-113). Newark: International Reading Association.

    Armstrong, J., & Bray, J. (1986). How can we improve textbook? (ERIC Document Reproduction Service No. ED292 208)

    Ausubel, D. P. (1962). A subsumption theory of meaningful verbal learning and retention. The Journal of General Psychology, 66, 213-224.

    Bahar, M., Johnstone, A. H., & Hansell, M. H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84-86.

    Barak, J. (1999). As ‘process’ as it can get: Students’ understanding of biological processes. International Journal of Science Education, 21(12),1281-1292
    Baudet, S., & Denhiere, G. (1991). Mental models and acquisition of knowledge from text: Representation and acquisition of functional systems. In G. Denhiere, & Jean-Pierre Rossi (Eds.), Text and text processing (pp.155-187). New York : North-Holland.

    Bestgen, Y., & Dupont, V. (2003). The construction of spatial situation models during reading. Psychological Research, 67, 209-218.

    Boulter, C. J., & Buckley, B. C. (2000). Constructing a typology of models for science education. In J. K. Gilbert and C. J. Boulter.(Eds.), Developing models in science education (pp.41-57). Dordrecht: Kluwer Academic Publishers.

    Bruner, J. S. (1977). The process of education. Cambridge : Harvard University Press.

    Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In J. K. Gilbert and C. J. Boulter(Eds.), Developing models in science education (pp.119-135). Dordrecht: Kluwer Academic Publishers.

    Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 22(9), 895-935.

    Chen, H., Smith, T. R., Larsgaard, M. L., Hill, L. L., & Ramsey, M. (1997). A geographic knowledge representation system for multimedia geospatial retrieval and analysis. International Journal on Digital Libraries, 1, 132-152.

    Chiappetta, E. L., Koballa, T. R., & Collette, A. T. (1998). Science instruction in the middle and secondary schools (4th ed.). N.J. : Merrill Publishing Company.

    Chi, M. T. H., Chiu, M. H., & deLeeuw, N. (1992). Learning in a non-physical science domain: The human circulatory system. (ERIC Document Reproduction Service No. 342 629)

    Chi, M. T. H., Slotta, J. D., & deLeeuw, N. (1994). From things to process: A theory of conceptual for learning science concepts. Learning and Instruction, 4, 27-43.

    Collett, A. T., & Chiappetta, E. L. (Eds.) (1994). Science instruction in the middle and secondary schools (3rd ed.). New York : Maxwell Macmillan International.
    Coll, R. K., & Treagust, D. F. (2002). Exploring tertiary student’s understanding of covalent bonding. Research in Science and Technology Education, 20(2), 241-268.

    Collins, A. (1995). National Science Education Standards in the United States: A process and a product. Studies in Science Education, 26, 7-37.

    Finley, F. N., Stewart, J., & Yarroch, W. L. (1982). Teachers’ perceptions of important and difficult science content. Science Education, 66(4), 531-538.

    Fisher, K. M. (2000). Overview of knowledge mapping. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge (pp.25-37). Dordrecht: Kluwer Academic Publishers.

    Gagn, E. D., Yekovich, C. W., & Yekovich, F. R. (1993). The cognitive psychology of school learning (2nd ed.). New York : HarperCollins College Publishers.

    Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert and C. J. Boulter(Eds.), Developing models in science education (pp.3-17). Dordrecht: Kluwer Academic Publishers.

    Gilbert, J. K. (2003, December). Models and modelling: Routes to more authentic science education. Paper presented at International Conference on Science and Mathematics Learning, National Taiwan Normal University, Taipei.

    Groves, F. H. (1995). Science vocabulary load of selected secondary science textbooks. School Science and Mathematics, 95(5), 231-235.

    Hand, B. M., Alvermann, D. E., Gee, J., Guzzetti, B., Norris, S. P., Phillips, L. M., Prain, V., & Yore, L. (2003). Message from the “Island group”: What is literacy in scientific literacy? Journal of Research in Science Teaching, 40(7), 607-615.

    Harms, N. C., & Yager, R. E. (1981). What research says to the science teacher, Vol3. Washington, DC: National Science Teaching Association.

    Hewson, P., & Lemberger, J. (2000). Status as the hallmark of conceptual learning. In R. Millar (Ed.), Improving science education: the contribution of research (pp.110-125). Phildelphia, Pa. : Open University Press.
    Holliday, W. G., Burnner, L. L., & Donais, E. L. (1977). Differential cognitive and affective responses to flow diagrams in science. Journal of Research in Science Teaching, 14(2), 129-138.

    Holmes, B. C. (1987). Children’s inferences with print and pictures. Journal of Educational Psychology, 79(1), 14-18.

    Honey, J. N. (1996). Biological models: Some significant features. In K. M. Fisher, & M. R. Kibby (Eds.), Knowledge acquisition, organization, and use in biology (pp.226-234). New York: Springer-Verlag Berlin Heidelberg.

    Hoshino, O. (2003). Coherent interaction of dynamical attractors for object-based selective attention. Biological Cybernetics, 89, 107-118.

    Hynd, C. R., McWhorter, J. Y., Phares, V. L., & Suttles, C. W. (1994). The role of instructional variables in conceptual change in high school physics topics. Journal of Research in Science Teaching, 31(9), 933-946.

    Kesidou, S., & Roseman, J. E. (2002). How well do middle school science programs measure up? Findings from project 2061’s curriculum review. Journal of Research in Science Teaching, 39(6), 522-549.

    Kohn, A. (1993). Neural communication in a mnemonic nutshell: A cognitive framework that improves understanding. The American Biology Teacher, 55(1), 21-28.

    Kosslyn, S. M. (1975). Information representation in visual image. Cognitive Psychology, 7, 341-370.

    Kulhavy, R. W., Lee, J. B., & Caterino, L. C. (1985). Conjoint retention of maps and related discourse. Contemporary Educational Psychology, 10, 28-37.

    Leach, J. (1999). Students’ understanding of the co-ordination of theory and evidence in science. International Journal of Science Education, 21(8), 789-806

    Marshall, J. A., & Srikanth, V. (2000). Curved trajectory prediction using a self-organizing neural network. International Journal of Neural System, 10(1), 59-70.
    Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84(4), 444-452.

    McNamara, T. P. (1994). Knowledge representation. In R. J. Sternberg (Ed.), Thinking and Problem Solving (pp.81-117). San Diego: Academic Press.

    Meyer, L. A. (1991). Are science textbooks considerate? In C. M. Santa, & D. E. Alvermann (Eds.), Science Learning: Processes and Application (pp.28-37). Newark: International Reading Association.

    Mintzes, J. J., & Wandersee, J. H. (1998). Reform and innovation in science teaching: A human constructivist. In J. J. Mintzes, J. H. Wandersee, & J. D. Novak (Eds.), Teaching science for understanding: A human constructivist view (pp.29-58). San Diego, CA : Academic Press.

    Otero, J. (1996). Component of comprehension monitoring in the acquisition of knowledge form science texts. In K. M. Fisher, & M. R. Kibby (Eds.), Knowledge acquisition, organization, and use in biology (pp.36-43). New York: Springer-Verlag Berlin Heidelberg.

    Paivio, A. (1986). Mental representation: A dual-coding approach. New York: Oxford University.

    Patrizi, F. M. (1985). A classroom movement exercise for teaching neural transmission. Austin, TX: Annual Meeting of the Southwestern Psychological Association. (ERIC Document Reproduction Service No. ED258 877)

    Perfetti, C. A. (1989). There are generalized abilities and one of them is reading. In L. B. Resnick (Ed.), Knowing, Learning, and Instruction (pp.307-335). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Pezdek, K., Roman, Z., & Sobolik, K. G. (1986). Spatial memory for objects and words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(4), 530-537.

    Porzio, D. T. (1997). Examining effects of graphics calculator use on students’ understanding of numerical, graphical, and symbolic representations of calculus concepts. Chicago, IL: Annual Meeting of the American Educational Research Association. (ERIC Document Reproduction Service No. ED410 112)

    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception toward a theory of conceptual change. Science Education, 66(2), 211-227.

    Reynolds, R. E., & Baker, D. R. (1987). The utility of graphical representations in text: Some theoretical and empirical issues. Journal of Research in Science Teaching, 24(2), 161-173.

    Robinson, D. H., Schraw, G. (1994). Computational efficiency through visual argument: Do graphic organizers communicate relations in text too effectively? Contemporary Educational Psychology, 19, 399-415.

    Roth, K. J. (1991). Reading science texts for conceptual change. In C. M. Santa, & D. E. Alvermann (Eds.), Science Learning: Processes and Application (pp.48-63). Newark: International Reading Association.

    Rumelhart, D. E., & Norman, D. A. (1985). Representation of knowledge. In A. M. Aitkenhead, & J. M. Slack (Eds.), Issues in Cognitive Modeling (pp.15-62). London: Lawrence Erlbaum Associates.

    Smith, E. L., Blakeslee, T. D., & Anderson, C. W. (1993). Teaching strategies associated with conceptual change learning in science. Journal of Research in Science Teaching, 30(2), 111-126.

    Swaffar, J. K. (1988). Readers, texts, and second languages: The interactive processes. The Modern Journal, 72, 123-149.

    Treagust, D. F. (2003, December). Scientific literacy, meta-cognitive capabilities and explanatory frameworks: Routes to more authentic science education. Paper presented at International Conference on Science and Mathematics Learning, National Taiwan Normal University, Taipei.

    Tversky, B. (1989). Parts, partonomies, and taxonomies. Developmental Psychology, 25(6), 983-995.

    Venville, G. J., & Treagust, D. F. (1997). Analogies in biology education: A contentious issue. The American Biology Teacher, 59(5), 282-287.

    Waheed, T., & Lucas, A. M. (1992). Understanding interrelated topics: photosynthesis at age 14. Journal of Biological Education, 26(3), 193-199.

    Wandersee, J. H., Fisher, K. M., & Moody, D. E. (2000). The nature of biology knowledge. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge (pp.25-37). Dordrecht: Kluwer Academic Publishers.

    Wandersee, J. H. (2000). Language, analogy, and biology.. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge (pp.95-108). Dordrecht: Kluwer Academic Publishers.

    White, B. Y., & Frederiksen, J. R. (1998). Inquiry, Modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118.

    Wood, T. L., & Wood, W. L. (1988). Assessing potential difficulties in comprehending fourth grade science textbook. Science Education, 72(5), 561-574.

    Yore, L. D., & Denning, D. (1989). Implementing change in secondary science reading and textbook useage: A desired image, a current profile, and a plan for change. San Francisco, CA: National Association for Research in Science Teaching. (ERIC Document Reproduction Service No. ED305 270)

    Yore, L. D., & Shymansky, J. A. (1991). Reading in science: Developing an operational conception to guide instruction. Journal of Science Teacher Education, 2(2), 29-36.

    QR CODE