簡易檢索 / 詳目顯示

研究生: 陳家文
Chen, Jia-Wen
論文名稱: 石墨烯量子點於垂直共振腔面射型雷射之光學特性研究
graphene quantum dots vertical cavity surface emitting lasers
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 42
中文關鍵詞: 石墨烯量子點垂直共振腔面射型雷射微波輔助水熱法
英文關鍵詞: Graphene Quantum Dots, Vertical Cavity Surface Emitting Laser, Microwave-Assisted Hydrothermal Method
DOI URL: http://doi.org/10.6345/NTNU201900964
論文種類: 學術論文
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯量子點 (GQDs) 是一種新型光學增益材料,目前可用於具有高性價比和高效率元件的特性來作為光源。但截至目前為止,在學術期刊文獻當中,只有極少數關於GQDs產生誘發輻射,並應用於雷射輸出的研究與探討。在本碩士論文中,我們成功地製作出第一顆室溫光激發石墨烯量子點綠光面射型雷射( = 550 nm)。首先,藉由週期性成長堆疊Ta2O5 / SiO2兩種高折射係係數差異介電質材料,來設計並製作高光學品質的布拉格反射鏡 (Distributed Bragg Reflector, DBR),其不僅提供與GQDs在輻射光譜上具有高重疊性,並同時在紫外光區域具有高光學穿透率。我們自行設計的DBR,將可見光波段 400 – 700 nm的光反射率高達95% 以上,並且在激發雷射光 ( = 355 nm) 有高達30% 的穿透率。我們再將兩片Ta2O5 / SiO2 DBR夾擠GQDs 作為光學增益介質,形成垂直型光學共振腔面射型雷射結構(Vertical-Cavity Surface-Emitting Laser, VCSEL),透過脈衝雷射激發後 (5 ns pulse width , 10 Hz repetition rate,  = 355 nm),最終在室溫下產生穩定的綠光雷射輸出。而我們的雷射是種無極化現象的多模態 (multi-mode) 雷射,較容易地去調控我們所需要的波長,也可以從 CIE1931 座標當中確認到我們的雷射波長是很穩定的,是可以藉由調控 GQDs 的直徑大小來控制我們雷射的發光波長。
    藉由本實驗清楚地證明了GQDs能作為一種實用、成本低廉且高量子轉換效率的光學增益材料,展現GQD-VCSEL在寬色域雷射顯示器和投影式影像的高潛力應用。

    Nonzero-bandgap graphene quantum dots (GQDs) are novel optical gain materials promising for solution-processed light sources with high cost efficiency and device performance. To date, there have only been a few reports on the realization of GQDs-based lasers. Herein, we demonstrate for the first time room-temperature lasing emission with green gamut from GQDs in a vertical optical cavity composed of Ta2O5/SiO2 dielectric distributed Bragg reflectors (DBRs). The lasing is enabled by the unique design of the DBR which not only provides a wide stopband spectrally overlapping with the emission of the GQDs but also allows high transmittance of optical excitation in the UV-light region. This demonstration is a clear evidence of the use of GQDs as optical gain materials and represents an important step forward towards their potential applications in wide-gamut laser displays and projectors.

    致謝 ii 摘要 iii Abstract v 目錄 vi 圖目錄 viii 表目錄 x 第一章 序論 1 1.1 前言 1 1.2研究動機與目的 2 1.3 論文架構 3 第二章 基本原理及文獻回顧 4 2.1 雷射原理 4 2.2 濾光片的設計方法 9 2.3 垂直共振腔面射型雷射 11 2.3 石墨烯量子點介紹 13 第三章 實驗方法與材料 16 3.1 實驗方法 16 3.2 實驗耗材 21 第四章 結果與討論 22 4.1 石墨烯量子點基本量測與分析 22 4.2 拉格反射鏡(DBR)特性分析 27 4.3 石墨烯量子點於VCSEL之探討 32 第五章 結論與未來展望 39 5.1 結論與未來展望 39 參考文獻 40

    [1] X. Yan et al., "Synthesis of large, stable colloidal graphene quantum dots with tunable size," vol. 132, no. 17, pp. 5944-5945, 2010.
    [2] J. Shen et al., "Facile preparation and upconversion luminescence of graphene quantum dots," vol. 47, no. 9, pp. 2580-2582, 2011.
    [3] S.-H. et al., "Unique properties of graphene quantum dots and their applications in photonic/electronic devices," vol. 50, no. 10, p. 103002, 2017.
    [4] L. Ponomarenko et al., "Chaotic Dirac billiard in graphene quantum dots," vol. 320, no. 5874, pp. 356-358, 2008.
    [5] K. A. Ritter et al., "The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons," vol. 8, no. 3, p. 235, 2009.
    [6] D. Pan et al., "Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots," vol. 22, no. 6, pp. 734-738, 2010.
    [7] L. L. Li et al., "A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots," vol. 22, no. 14, pp. 2971-2979, 2012.
    [8] C. Luk et al., "An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes," vol. 22, no. 42, pp. 22378-22381, 2012.
    [9] W. Zhang et al., "Observation of lasing emission from carbon nanodots in organic solvents," vol. 24, no. 17, pp. 2263-2267, 2012.
    [10] M. Cao et al., "Tunable amplified spontaneous emission in graphene quantum dots doped cholesteric liquid crystals," vol. 28, no. 24, p. 245202, 2017.
    [11] T. Gao et al., "Red, yellow, and blue luminescence by graphene quantum dots: syntheses, mechanism, and cellular imaging," vol. 9, no. 29, pp. 24846-24856, 2017.
    [12] G. Haider et al., "Dirac point induced ultralow-threshold laser and giant optoelectronic quantum oscillations in graphene-based heterojunctions," vol. 8, no. 1, p. 256, 2017.
    [13] T.-N. Lin et al., "Enhanced performance of GaN-based ultraviolet light emitting diodes by photon recycling using graphene quantum dots," vol. 7, no. 1, p. 7108, 2017.
    [14] Z. Tian et al., "Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication," vol. 11, no. 8, pp. 3489-3494, 2019.
    [15] C. Dang et al., "Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films," vol. 7, no. 5, p. 335, 2012.
    [16] Y. C. Yao et al., "Coherent and polarized random laser emissions from colloidal CdSe/ZnS quantum dots plasmonically coupled to ellipsoidal Ag nanoparticles," vol. 5, no. 3, p. 1600746, 2017.
    [17] Y. Li et al., "Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity," vol. 12, no. 10, p. 987, 2017.
    [18] D. G. Lidzey et al., "Strong exciton–photon coupling in an organic semiconductor microcavity," vol. 395, no. 6697, p. 53, 1998.
    [19] H. Zhu et al., "Realization of lasing emission from graphene quantum dots using titanium dioxide nanoparticles as light scatterers," vol. 5, no. 5, pp. 1797-1802, 2013.
    [20] S. Gottardo et al., "Resonance-driven random lasing," vol. 2, no. 7, p. 429, 2008.
    [21] Y.-J. Lee et al., "Flexible random lasers with tunable lasing emissions," vol. 10, no. 22, pp. 10403-10411, 2018.
    [22] K. D. Choquette et al., "Vertical-Cavity Surface-Emitting Lasers XX," in Proc. of SPIE Vol, 2016, vol. 9766, pp. 976601-1.
    [23] R. Rodes et al., "High-speed 1550 nm VCSEL data transmission link employing 25 GBd 4-PAM modulation and hard decision forward error correction," vol. 31, no. 4, pp. 689-695, 2012.
    [24] F. J. J. et al., "Recent advances of VCSEL photonics," vol. 24, no. 12, pp. 4502-4513, 2006.
    [25] T.-C. Lu et al., "Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature," vol. 97, no. 7, p. 071114, 2010.
    [26] Y. Mei et al., "Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’," vol. 6, no. 1, p. e16199, 2017.
    [27] S. A. Khan et al., "Modeling of Low Power Multilayer Vertical Cavity Surface Emitting Laser," vol. 5, no. 5, pp. 155-160, 2015.
    [28] C. C. Lee, Thin film optics and coating technology. 藝軒圖書, 2002.
    [29] W. Chen et al., "Synthesis and applications of graphene quantum dots: A review," vol. 7, no. 2, pp. 157-185, 2018.
    [30] H.-H. Cho et al., "Surface engineering of graphene quantum dots and their applications as efficient surfactants," vol. 7, no. 16, pp. 8615-8621, 2015.
    [31] R. Tian et al., "Solvothermal method to prepare graphene quantum dots by hydrogen peroxide," vol. 60, pp. 204-208, 2016.
    [32] L. Tang et al., "Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots," vol. 6, no. 6, pp. 5102-5110, 2012.
    [33] D. B. Shinde et al., "Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes," vol. 18, no. 39, pp. 12522-12528, 2012.
    [34] L. Bao et al., "Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism," vol. 23, no. 48, pp. 5801-5806, 2011.
    [35] J. Peng et al., "Graphene quantum dots derived from carbon fibers," vol. 12, no. 2, pp. 844-849, 2012.

    無法下載圖示 本全文未授權公開
    QR CODE