簡易檢索 / 詳目顯示

研究生: 陳柏棣
Chen, Po-Ti
論文名稱: 可撓式全固態鋰離子薄膜電池
Flexible All-Solid-State Lithium Ion Thin Film Batteries
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 92
中文關鍵詞: 可撓式全固態薄膜電池
英文關鍵詞: Flexible, All-Solid-State, Thin Film Batteries
論文種類: 學術論文
相關次數: 點閱:74下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技產品不斷推陳出新,生活中不時可見許多攜帶式與穿戴式之電子產品,而電池之需求亦隨之增加。全固態薄膜電池具有良好之安全性與高能量密度,於未來之發展極具潛力。
    本實驗之目的為製作全固態鋰離子薄膜電池,以ruby mica scratchfree 作為基板,利用直流濺鍍(direct sputtering; DC sputtering)沉積鉑金屬作為電流收集器,再以射頻磁控濺鍍法(radio frequency magnetron sputtering; RF magnetron sputtering)進行陰極薄膜鋰鈷氧化物(lithium cobalt oxide; LiCoO2)與固態電解質鋰磷氧氮化物(lithium phosphorous oxynitride; LiPON)之製備,並以熱蒸鍍法蒸鍍鋰金屬薄膜與aromatic polyurea,分別作為陽極材料與保護膜。
    陰極材料藉由高溫爐(furnace)與快速熱退火爐(rapid thermal annealing; RTA),以不同之升溫速率或不同之升溫時間,進行熱處理,使其具晶相。藉x光繞射儀(x-ray diffraction; XRD)分析晶相;以掃描電子顯微鏡(scanning electron microscope; SEM)觀測表面之形貌;並以充放電量決定陰極材料之電化學特性。
    於固態電解質部分,藉由射頻磁控濺鍍法(RF magnetron sputtering)濺鍍LiPON薄膜,而完成之LiPON薄膜則置放收套箱內,以加熱板(hot plate)對LiPON薄膜作不同溫度之熱處理,並於熱處理後進行阻抗量測,計算LiPON薄膜之離子導電度。
    藉由RTA於升溫時間2 min下,熱處理陰極材料LiCoO2薄膜。並以加熱板於200°C熱處理固態電解質LiPON薄膜,再以蒸鍍機蒸鍍鋰金屬,以此些方式所組成之薄膜電池可進行充放電量測並點亮LED燈。

    In our life, there are more and more portable electronic devices and wearable electronic devices when the technology is improving all the time. Therefore, the requirement of batteries is more important now. Because all-solid-state thin film battery feature with good safety and high energy density, it is much potential for the development of future work.
    In our experiment, we try to make all-solid-state thin film batteries. We use ruby mica scratchfree to be the substrate. First, we deposit platinum by direct current sputtering as a current collector. Then, we deposit lithium cobalt oxide (LiCoO2) cathode material and lithium phosphorus oxynitride (LiPON) solid electrolyte on the platinum current collector by radio frequency sputtering. Finally we fabricate the lithium metal and aromatic polyurea to be the anode material and encapsulation by thermal evaporation.
    We use the furnace and rapid thermal annealing (RTA) to heat the cathode material, and control the heating rate of machine. We use x-ray diffraction to analyze the crystalline structure. Scanning electron microscope is used to observe the surface morphology, and capacity test is able to decide the chemical properties of cathode material.
    In the part of solid electrolyte, we use hot plate to heat the LiPON film in different temperature. And we measure the electrochemical impedance spectroscopy to calculate the ion conductivity.
    Using the rapid thermal annealing (RTA) at the rate of 260oC/min is a good way to heat the LiCoO2 film. And we use hot plate at the 200oC to do the heat treatment of LiPON film. Finally, we use the thermal evaporation to evaporate the lithium metal. The complete all-solid-state thin film battery can do the cycle test and light the LED.

    總目錄..................................................I 圖目錄.................................................IV 表目錄.................................................XI 第一章 緒論..............................................1 1.1 電池................................................2 1.2 鋰電池..............................................3 1.3 鋰離子電池...........................................3 1.4 薄膜電池.............................................5 1.5 陰極材料............................................11 1.5.1 鋰鎳氧化物(lithium nickel oxide; LiNiO2)..........11 1.5.2 鋰錳氧化物(lithium manganese oxide; LiMn2O2)......12 1.5.3 鋰鈷氧化物(lithium cobalt oxide; LiCoO2)..........13 1.6 電解質.............................................15 1.6.1 液態電解質........................................15 1.6.2 固態電解質........................................15 1.6.3 非晶相無機固態電解質鋰磷氧氮化物(lithium phosphorous oxynitride; LiPON)................................16 1.7 陽極材料............................................17 1.8 研究動機............................................18 第二章 儀器原理與實驗步驟.................................19 2.1 全固態薄膜電池之製備儀器..............................19 2.1.1 濺鍍機台..........................................19 2.1.2 蒸鍍機 (thermal evaporator)......................24 2.1.3 快速熱退火爐 (rapid thermal annealing; RTA).......25 2.2 全固態薄膜電池之材料分析儀器..........................26 2.2.1 掃描電子顯微鏡 (scanning electron microscope; SEM).............................................26 2.2.2 x光繞射儀(x-ray diffraction; XRD).................27 2.2.3 拉曼光譜(Raman spectroscopy)......................28 2.2.4 x射線光電子能譜儀(x-ray photoelectron spectroscopy; XPS).............................................29 2.2.5 紅外光譜(infrared spectroscop)....................30 2.2.6 充放電測試儀......................................30 2.3 鈕扣電池之組裝步驟...................................31 2.4 全固態薄膜電池之組裝步驟..............................33 2.4.1 鉑金屬(platinum, Pt)電極之製備.....................33 2.4.2 鋰鈷氧化物(Lithium cobalt oxide; LiCoO2)薄膜之製備.36 2.4.3 鋰磷氧氮化物(Lithium phosphorous oxynitride; LiPON) 薄膜之製備........................................37 2.4.4 鋰金屬(lithium; Li)之製備.........................39 2.4.5 Aromatic polyurea 薄膜之製備......................40 2.4.6 聚二甲基矽氧烷(polydimethylsiloxane; PDMS)之製備...41 第三章 結果與討論........................................44 3.1 鋰鈷氧化物(Lithium cobalt oxide; LiCoO2)薄膜........44 3.1.1 以快速熱退火爐(rapid thermal annealing; RTA)處理鋰鈷氧 化物(Lithium cobalt oxide; LiCoO2)薄膜............44 3.1.2 以高溫爐(furnace)處理鋰鈷氧化物(Lithium cobalt oxide; LiCoO2)薄膜......................................54 3.2 鋰磷氧氮化物(Lithium phosphorous oxynitride; LiPON)薄膜 ...................................................64 3.2.1 以加熱板(hot plate)熱處理鋰磷氧氮化物(Lithium phosphorous oxynitride; LiPON)薄膜.....................65 3.3 Aromatic polyurea薄膜..............................83 3.4 全固態薄膜電池......................................86 第四章 結論.............................................88 參考文獻................................................90

    [1]“Voltaic pile,” Wikipedia, the free encyclopedia. 17-Apr-2015.
    [2]S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, “Review on recent progress of nanostructured anode materials for Li-ion batteries,” J. Power Sources, vol. 257, pp. 421–443, Jul. 2014.
    [3]M. S. Whittingham, “Electrical Energy Storage and Intercalation Chemistry,” Science, vol. 192, no. 4244, pp. 1126–1127, Jun. 1976.
    [4]K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density,” Mater. Res. Bull., vol. 15, no. 6, pp. 783–789, Jun. 1980.
    [5]A. Yoshino, K. Sanechika, and T. Nakajima, “Secondary battery,” US4668595 (A), 26-May-1987.
    [6]“Keywords to understanding Sony Energy Devices|Sony Energy Devices Corporation.” [Online]. Available: http://www.sonyenergy-devices.co.jp/en/keyword/. [Accessed: 16-Jul-2015].
    [7]S.-J. H. Seung-Wan Song, “Cycling-Driven Structural Changes in a Thin-Film Lithium Battery on Flexible Substrate,” Electrochem. Solid-State Lett., vol. 12, no. 8, 2009.
    [8]J. G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M. J. Choi, H. Y. Chung, and S. Park, “A review of lithium and non-lithium based solid state batteries,” J. Power Sources, vol. 282, pp. 299–322, May 2015.
    [9]K. Kanehori, K. Matsumoto, K. Miyauchi, and T. Kudo, “Thin film solid electrolyte and its application to secondary lithium cell,” Solid State Ion., vol. 9–10, Part 2, pp. 1445–1448, Dec. 1983.
    [10]J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Robertson, “Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries,” J. Power Sources, vol. 43, no. 1–3, pp. 103–110, Mar. 1993.
    [11]B. Wang, J. B. Bates, F. X. Hart, B. C. Sales, R. A. Zuhr, and J. D. Robertson, “Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes,” J. Electrochem. Soc., vol. 143, no. 10, pp. 3203–3213, Jan. 1996.
    [12]S.-W. Song, H. Choi, H. Y. Park, G. B. Park, K. C. Lee, and H.-J. Lee, “High rate-induced structural changes in thin-film lithium batteries on flexible substrate,” J. Power Sources, vol. 195, no. 24, pp. 8275–8279, Dec. 2010.
    [13]M. Koo, K.-I. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K. Kang, and K. J. Lee, “Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems,” Nano Lett., vol. 12, no. 9, pp. 4810–4816, Sep. 2012.
    [14]A. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik, and S.-J. Yoon, “Issue and challenges facing rechargeable thin film lithium batteries,” Mater. Res. Bull., vol. 43, no. 8–9, pp. 1913–1942, Sep. 2008.
    [15]M. S. Whittingham, “Lithium Batteries and Cathode Materials,” Chem. Rev., vol. 104, no. 10, pp. 4271–4302, Oct. 2004.
    [16]C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, “Comparative Issues of Cathode Materials for Li-Ion Batteries,” Inorganics, vol. 2, no. 1, pp. 132–154, Mar. 2014.
    [17]K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density,” Mater. Res. Bull., vol. 15, no. 6, pp. 783–789, Jun. 1980.
    [18]Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, and M. A. O’Keefe, “Atomic resolution of lithium ions in LiCoO2,” Nat. Mater., vol. 2, no. 7, pp. 464–467, Jul. 2003.
    [19]Y. Yoon, C. Park, J. Kim, and D. Shin, “Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries,” J. Power Sources, vol. 226, pp. 186–190, Mar. 2013.
    [20]P. Knauth, “Inorganic solid Li ion conductors: An overview,” Solid State Ion., vol. 180, no. 14–16, pp. 911–916, Jun. 2009.
    [21]“Characteristic X-rays | MyScope.” [Online]. Available: http://www.ammrf.org.au/myscope/analysis/eds/xraygeneration/characteristic/. [Accessed: 30-Jun-2015].
    [22]“Bremsstrahlung,” Wikipedia, the free encyclopedia. 21-Jun-2015.
    [23]“Bragg’s law,” Wikipedia, the free encyclopedia. 16-Jun-2015.
    [24]“Raman spectroscopy,” Wikipedia, the free encyclopedia. 27-Jun-2015.
    [25]H. Y. Park, S. C. Nam, Y. C. Lim, K. G. Choi, K. C. Lee, G. B. Park, J. B. Kim, H. P. Kim, and S. B. Cho, “LiCoO2 thin film cathode fabrication by rapid thermal annealing for micro power sources,” Electrochimica Acta, vol. 52, no. 5, pp. 2062–2067, Jan. 2007.
    [26]“2013 Investigations on sputter deposited LiCoO2 thin.pdf.” .
    [27]Z. Hu, D. Li, and K. Xie, “Influence of radio frequency power on structure and ionic conductivity of LiPON thin films,” Bull. Mater. Sci., vol. 31, no. 4, pp. 681–686, Oct. 2008.
    [28]S.-J. Hwang, “Characterization of the polyurea polymeric waveguides fabricated using the chemical vapor deposition process,” Opt. Laser Technol., vol. 40, no. 4, pp. 607–613, Jun. 2008.
    [29]“4,4′-Diaminodiphenylmethane ≥97.0% (GC) | Sigma-Aldrich.” [Online]. Available: http://www.sigmaaldrich.com/catalog/product/aldrich/32950?lang=en®ion=TW. [Accessed: 02-Aug-2015].
    [30]“Methylene diphenyl diisocyanate,” Wikipedia, the free encyclopedia. 01-Jul-2015.
    [31]Y. Takahashi, M. Iijima, and E. Fukada, “Pyroelectricity in Poled Thin Films of Aromatic Polyurea Prepared by Vapor Deposition Polymerization,” Jpn. J. Appl. Phys., vol. 28, no. 12A, p. L2245, Dec. 1989.
    [32]“File:Diphenylmethane.png - Wikimedia Commons.” [Online]. Available: https://commons.wikimedia.org/wiki/File:Diphenylmethane.png. [Accessed: 03-Aug-2015].

    下載圖示
    QR CODE