簡易檢索 / 詳目顯示

研究生: 周楷傑
Chou, Kai-Chieh
論文名稱: 脈衝雷射蒸鍍法製備氧化鉺薄膜的探討:結構、光學與磁性研究
Study of Zinc Erbium Oxide Thin Grown by Pulsed-Laser Deposition : Structural, Optical, and Magnetic Properties
指導教授: 駱芳鈺
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 50
中文關鍵詞: 稀磁性半導體氧化鉺鋅薄膜脈衝雷射蒸鍍法
論文種類: 學術論文
相關次數: 點閱:220下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用脈衝雷射沉積法製備摻雜鉺的氧化鋅薄膜,在3×〖10〗^(-1)及3×〖10〗^(-3)mbar兩氧壓下用蓋板法與銀膠法固定基板加熱。XPS成分分析利用Er離子面積計算薄膜比例與靶材比例相近。X光繞射譜中,摻雜Er濃度越高,在低氧壓下兩製備法的 ZnO結晶品質越差且c軸晶格常數越大,而高氧壓下兩制備法的ZnO結晶品質越差且c軸晶格常數先變小在變大。蓋板法在不同氧壓下製備氧化鉺鋅薄膜,高氧壓下薄膜整體結晶品質比低氧壓佳。
    拉曼光譜中,低氧壓只有蓋板法可觀察到ZnO的E_2 (high)及E_2 (low)的振動模式;高氧壓下兩製備方法皆有ZnO E_2(low)且ZnO有強烈E_2(high)訊號,Er 3at.%螢光效應最強。PL光譜顯示近能隙發光強度隨著Er濃度上升而下降,缺陷發光則隨Er濃度上升而增加,低氧壓PL光譜由近能隙、鋅空缺、鋅間隙所貢獻,高氧壓PL光譜由近能隙、鋅空缺、鋅間隙、氧空缺、氧間隙所貢獻。SQUID m-H圖顯示室溫ZnO無磁性,其他濃度氧化鉺鋅薄膜為順磁性,而低溫氧化鉺鋅薄膜為順磁性。

    Pulsed-laser deposition (PLD) was applied to grow erbium(Er)-doped ZnO thin films on c-sapphire substrate under two different oxygen pressures : 3×〖10〗^(-3) and 3×〖10〗^(-1) mbar by using shadow mask or silver glue. XPS analysis showed Er/Zn ratio of target was close to thin film which was calculated by using Er ion area. X-ray diffraction spectrum showed decreasing crystal quality of ZnO and increasing c-axis lattice constant with increasing Er doping concentration in two oxygen pressures for both methods. The overall crystal quality of Er-doped ZnO films in high oxygen pressure were better than in low oxygen pressure for shadow mask method.
    Raman spectroscopy only observed ZnO vibrational modes E_2(high) and E_2(low) in low oxygen pressure for shadow mask method. All films have E_2(low) and ZnO have stronger E_2(high) for two method in high oxygen pressure, however above Er 3at.%, fluorescent effect was observed for all films. PL spectra show near band gap(NBE) emission intensity decreased and defect luminescence emission(DLE) intensity increased with Er concentration increased . PL spectra emission consisted of near band gap(NBE), zinc vacancies and zinc interstitials in low oxygen pressure, however whose consisted of near band gap(NBE), zinc vacancies, zinc interstitials, oxygen vacancies, oxygen interstitials in high oxygen pressure. Magnetic investigations by SQUID showed no magnetism for pure ZnO thin film and paramagnetism for Er-doped ZnO thin films at T=300K and T=5K.

    Chapter1序論…………………………………………………………………………6 Chapter2背景識…………………………………………………………………........8 2.1氧化鋅(ZnO)、鉺(Er)與藍寶石基(Sapphire)…..…………………………………......8 2.2脈衝雷射蒸鍍法(pulsed-laser deposition,PLD)……………………………………......9 2.3表面輪廓儀(α-step)……………………………………………………………11 2.4 X光繞射(X-ray diffraction, XRD)…………….………………………….…………..12 2.5 X光光電子能譜(X-ray photoelectronspectroscopy,XPS)……………………………14 2.6光致螢光(photoluminescence, PL)……………………………...…………………….16 2.7拉曼散射光譜(Raman-scattering spectroscopy)……………………………….……..18 2.8超導量子干涉儀 (Superconducting Quantum Interference Device ,SQUID) …………………….………………………………………………………….…………...20 2.9 磁性簡介……………………………………………………………………...22 Chapter3實驗程………………………………………………………………...…...24 Chapter4結果與論………………………………………………………………......26 4.1鍍膜速率分析…………………………………................................................26 4.2成分分析………………………………............................................................28 4.3 XRD析……………………………………………………………………......30 4.4拉曼光譜…………………………………........................................................34 4.5光致螢光光譜……………………………........................................................37 4.6磁性………………………………………........................................................42 Chapter5結論與展望………………………………………………………………..45 參考文獻……………………………………………………………………………..46 附錄…………………………………………………………………………………..49

    [1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G.
    Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)
    [2] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828
    (1989).
    [3] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
    [4] 駱芳鈺, 台灣磁性技術技術協會, 會訊 50 期, 2009.
    [5] H. Ohno, D. Chiba, F. Matsukura, T. O. E. Abe, T. Dietl, Y. Ohno, and K. Ohtani,
    Nature 408, 944 (2000).
    [6] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. End, S. Katsumoto, and Y. Iye, Appl.
    Phys. Lett. 69, 363 (1996).
    [7] H. Ohno, Science 281, 951 (1998).
    [8] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019
    (2000).
    [9] T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).
    [10] Jin-Chung Sin and Sze-Mun Lam,”Fabrication of erbium-doped spherical-like
    ZnO hierarchical nanostructures with enhanced visible light-driven photocatalytic activity”, Materials Letters 91 (2013) 1-4
    [11] Highly erbium-doped zinc-oxide thin film prepared by laser ablation and its
    1.54µm emission dynamics,J.Appl.Phys.88,7129 (2000)
    [12] 1.54µm emission dynamics of erbium-doped zinc-oxide thin films, Appl. Phys.
    Lett. 76, 3935 (2000)
    [13] 1.54µm emission mechanism of Er-doped zinc oxide thin films, Applied Surface
    Science 257 (2011) 2822-2824
    [14] Rita John and Rajaram Rajakumari,” Synthesis and Characterization of Rare
    Earth Ion Doped Nano ZnO”, Nano-Micro Lett. 4(2), 65-72 (2012).
    [15] Infra-red emission properties of ZnO:Er thin films prepared on the sapphire
    substrates, Ceramics International 38S (2012) S585-S588
    [16] Local structure analysis of an optically active center in Er-doped ZnO thin film,
    J. Appl. Phys. 89, 3679 (2001)
    [17] Magnetic properties of Er-doped ZnO films prepared by reactive magnetron
    sputterin , Appl Phys A (2010) 100 79-82
    [18] Room-temperature ferromagnetism in Er-doped ZnO thin films, Scripta
    Materialia 60 (2009) 289-292
    [19] Preparation of Li and Er codoped ZnO thin films and their photoluminescence,
    Thin Solid Films 517 (2009) 5134-5136
    [20] Er-doped ZnO thin films grown by pulsed-laser deposition, J. Appl. Phys. 97,
    054905 (2005)
    [21] Pulsed-laser deposited Er:ZnO films for 1.54µm emission, Appl. Phys. Lett.
    90,072108 (2007)
    [22] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin,
    S.-J. Cho, and H. Morkoc, A comprehensive review of ZnO materials and
    devices, J. Appl. Phys. 98, 041301 (2005)
    [23] “Next Generation High Temperature Superconducting Wires” A.Goyal(Ed), Kluwer Academic/Plenum Publishers
    [24] Thin films development by pulsed laser-assisted deposition, E. Morintale, C. Constantinescu, M. Dinescu, Physics AUC, vol.20(part1), 43-56(2010)
    [25] N. Kasai M. Kakudo, X-Ray Diffraction by Macromolecules(Springer, 2005).
    [26] 林麗娟, X光繞射原理及其應用, 工業材料86期 (83年2月)
    [27] V. Sesha Sai Kumar, “X-ray Peak Broadening Analysis and Optical Studies of
    ZnO Nanoparticles Derived by Surfactant Assisted Combustion Synthesis”,
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, Vol. 5 No 2,
    02026(6pp) (2013).
    [28] A. Khorsand Zak, “X-ray analysis of ZnO nanoparticles by Williamson-Hall and
    size-strain plot Methods”, Solid State Sciences 13 (2011) 251-256.
    [29] 表面化學分析技術Surface Chemical Analysis Techniques,奈米通訊 NANO COMMUNICATION 19卷No.4,張立信 國立中興大學材料與工程學系
    [30] 光激發螢光量測的原理、架構及應用, Jia-Min Shieh, Yi-Fan Lai, Yong-Chang Lin, and Jr-Yau Fang
    [31] Zinc vacancy and erbium cluster jointly promote ferromagnetism in erbium-doped ZnO thin film, AIP Advances 4, 047121 (2014)
    [32] Temperature dependence of Raman scattering in ZnO , PHYSICAL REVIEW B 75, 165202,2007.
    [33] J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 _1977_.

    下載圖示
    QR CODE