研究生: |
潘予芹 Pan, Yu-Chin |
---|---|
論文名稱: |
汞對於斑馬魚仔魚側線感覺與離子調節功能之影響 The effects of mercury on the lateral line sensing and ion regulation of zebrafish larvae |
指導教授: |
林豊益
Lin, Li-Yih |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 斑馬魚 、毛細胞 、機械性傳導通道 、離子細胞 、有機汞 、無機汞 |
英文關鍵詞: | Zebrafish, Hair cells, MET channel, Ionocytes, Organic mercury, Inorganic mercury |
DOI URL: | http://doi.org/10.6345/THE.NTNU.SLS.024.2018.D01 |
論文種類: | 學術論文 |
相關次數: | 點閱:154 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
汞(Hg)是一種具高毒性的重金屬,非常容易藉由生物累積的方式進入食物鏈。其毒性取決於他的化學結構、接觸途徑以及物種,目前已有許多在人體及哺乳類動物實驗中,證明長期暴露在汞確實會造成損傷,即使是在低濃度下仍有極高的風險。先前對於汞造成斑馬魚影響的研究相當多,主題大多著重在汞對於斑馬魚胚胎時期神經與腦部發育的影響,較少去探討孵化後仔魚暴露在含汞的環境下,其皮表的離子細胞以及毛細胞的影響。本實驗利用斑馬魚仔魚作為模式物種,分別暴露於短時間(4 hrs)與長時間(48 hrs)含汞(氯化汞、甲基汞)的水體當中,觀察仔魚表皮的毛細胞與離子細胞;這兩型細胞分別負責機械性感受器的功能、排酸功能。短時間暴露於氯化汞和甲基汞後,導致仔魚表皮之毛細胞與離子細胞的細胞數目與功能下降;進而觀察到仔魚逆流行為、活動力以及體內鈣和鈉含量下降。長時間暴露後,於較低的濃度即可觀察到汞所造成的影響,包括細胞數目與功能的下降、逆流行為、體內離子含量及基因表現量的改變。另外,於本實驗我們也觀察到氯化汞與甲基汞所造成的毒性不盡相同。
Mercury (Hg) is a highly toxic heavy metal that may accumulate in the food chain through biomagnification and cumulative effects. Previous studies of mercury mostly focused on the effects on the nervous system of zebrafish embryos during their developmental stages, however, the effect on the epidermal cells has not been investigated. The purpose of this study is to investigate the effects of water borne mercury (methylmercury and mercury chloride) on the skin ionocytes and hair cells which are respectively responsible for ionic regulation and mechanical sensory in zebrafish larvae. After short-term(4 hrs)exposures, mercury chloride (HgCl2)and methylmercury ( CH3HgCl ) significantly reduced the number and function of hair cells and ionocytes. The Ca2+ and Na+ contents of the larvae decreased after Hg exposures. The rheotaxis and activity of the larvae decreased after Hg exposures. After long-term (48 hrs) exposures, we observed declines in the numbers of hair cell and ionocyte, whole body ionic contents, and rheotaxis behavior at lower concentrations. We also found that the toxicity was different between methylmercury and mercury chloride.
Aboud, O. (2010) Impact of pollution with lead, mercury and cadmium on the immune response of Oreochromis niloticus. New york science journal 3, 12-16.
Abu Bakar, N., Mohd Sata, N.S., Ramlan, N.F., Wan Ibrahim, W.N., Zulkifli, S.Z., Che Abdullah, C.A., Ahmad, S. & Amal, M.N. (2017) Evaluation of the neurotoxic effects of chronic embryonic exposure with inorganic mercury on motor and anxiety-like responses in zebrafish (Danio rerio) larvae. Neurotoxicology and teratology, 59, 53-61.
Ambrose, J.L., Gratz, L.E., Jaffe, D.A., Campos, T., Flocke, F.M., Knapp, D.J., Stechman, D.M., Stell, M., Weinheimer, A.J., Cantrell, C.A. & Mauldin, R.L., 3rd (2015) Mercury emission ratios from aoal-fired power plants in the Southeastern United States during NOMADSS. Environmental science & technology, 49, 10389-10397.
Berg, K., Puntervoll, P., Valdersnes, S. & Goksoyr, A. (2010) Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury. Aquatic toxicology, 100, 51-65.
Berntssen, M.H., Aatland, A. & Handy, R.D. (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquatic toxicology, 65, 55-72.
Beurg, M., Nam, J.H., Chen, Q. & Fettiplace, R. (2010) Calcium balance and mechanotransduction in rat cochlear hair cells. Journal of neurophysiology, 104, 18-34.
Bottino, C., Vazquez, M., Devesa, V. & Laforenza, U. (2016) Impaired aquaporins expression in the gastrointestinal tract of rat after mercury exposure. Journal of applied toxicology, 36, 113-120.
Bradley, M.A., Barst, B.D. & Basu, N. (2017) A review of mercury bioavailability in humans and fish. International journal of environmental research and public health, 14, 169-189.
Cambier, S., Gonzalez, P., Durrieu, G., Maury-Brachet, R., Boudou, A. & Bourdineaud, J.P. (2010) Serial analysis of gene expression in the skeletal muscles of zebrafish fed with a methylmercury-contaminated diet. The international journal of biochemistry & cell biology,, 44, 469-475.
Chang, W.J., Horng, J.L., Yan, J.J., Hsiao, C.D. & Hwang, P.P. (2009) The transcription factor, glial cell missing 2, is involved in differentiation and functional regulation of H+-ATPase-rich cells in zebrafish (Danio rerio). American journal of physiology. Regulatory, integrative and comparative physiology, 296, R1192-1201.
Chiu, L.L., Cunningham, L.L., Raible, D.W., Rubel, E.W. & Ou, H.C. (2008) Using the zebrafish lateral line to screen for ototoxicity. Journal of the association for research in otolaryngology, 9, 178-190.
Compeau, G.C. & Bartha, R. (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and environmental microbiology, 50, 498-502.
Cruz, S.A., Chao, P.L. & Hwang, P.P. (2013) Cortisol promotes differentiation of epidermal ionocytes through Foxi3 transcription factors in zebrafish (Danio rerio). Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 164, 249-257.
Dong, W., Liu, J., Wei, L., Jingfeng, Y., Chernick, M. & Hinton, D.E. (2016) Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos. PeerJ, 4, e2282.
Donini, A., Gaidhu, M.P., Strasberg, D.R. & O'Donnell M, J. (2007) Changing salinity induces alterations in hemolymph ion concentrations and Na+ and Cl- transport kinetics of the anal papillae in the larval mosquito, Aedes aegypti. The Journal of experimental biology, 210, 983-992.
Donini, A. & O'Donnell, M.J. (2005) Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. The Journal of experimental biology, 208, 603-610.
Ekino, S., Susa, M., Ninomiya, T., Imamura, K. & Kitamura, T. (2007) Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. Journal of the neurological sciences, 262, 131-144.
Esaki, M., Hoshijima, K., Kobayashi, S., Fukuda, H., Kawakami, K. & Hirose, S. (2007) Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. American journal of physiology. Regulatory, integrative and comparative physiology, 292, R470-480.
Esaki, M., Hoshijima, K., Nakamura, N., Munakata, K., Tanaka, M., Ookata, K., Asakawa, K., Kawakami, K., Wang, W., Weinberg, E.S. & Hirose, S. (2009) Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of zebrafish larvae. Developmental biology, 329, 116-129.
Esterberg, R., Hailey, D.W., Coffin, A.B., Raible, D.W. & Rubel, E.W. (2013) Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. The journal of neuroscience : the official journal of the society for neuroscience, 33, 7513-7525.
Eto, K., Marumoto, M. & Takeya, M. (2010) The pathology of methylmercury poisoning (minamata disease): The 50th anniversary of Japanese society of neuropathology. Neuropathology : official journal of the Japanese Society of Neuropathology, 30, 471-479.
Evans, D.H., Piermarini, P.M. & Choe, K.P. (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews, 85, 97-177.
Farina, M., Avila, D.S., da Rocha, J.B. & Aschner, M. (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochemistry international, 62, 575-594.
Giari, L., Simoni, E., Manera, M. & Dezfuli, B.S. (2008) Histo-cytological responses of Dicentrarchus labrax (L.) following mercury exposure. Ecotoxicology and environmental safety, 70, 400-410.
Goodrich, L.V. (2005) Hear, hear for the zebrafish. Neuron, 45, 3-5.
Grandjean, P., Weihe, P., White, R.F., Debes, F., Araki, S., Yokoyama, K., Murata, K., Sorensen, N., Dahl, R. & Jorgensen, P.J. (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicology and teratology, 19, 417-428.
Guh, Y.J. & Hwang, P.P. (2017) Insights into molecular and cellular mechanisms of hormonal actions on fish ion regulation derived from the zebrafish model. General and comparative endocrinology, 251, 12-20.
Harada, M. (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Critical reviews in toxicology, 25, 1-24.
Harris, J.A., Cheng, A.G., Cunningham, L.L., MacDonald, G., Raible, D.W. & Rubel, E.W. (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). Journal of the association for research in otolaryngology 4, 219-234.
Hassan, S.A., Moussa, E.A. & Abbott, L.C. (2012) The effect of methylmercury exposure on early central nervous system development in the zebrafish (Danio rerio) embryo. Journal of applied toxicology 32, 707-713.
Hassaninezhad, L., Safahieh, A., Salamat, N., Savari, A. & Majd, N.E. (2014) Assessment of gill pathological responses in the tropical fish yellowfin seabream of Persian Gulf under mercury exposure. Toxicology reports, 1, 621-628.
Heyvaert, A.C., Reuter, J., Slotton, D.G. & Goldman, C.R. (2000) Paleolimnological reconstruction of historical atmospheric lead and mercury deposition at Lake Tahoe, California-Nevada Environmental science and technology, 34, 3588-3597
Hirano, S. (1996) Evaluation of pulmonary toxicity of heavy metal compounds. Nihon eiseigaku zasshi. Japanese journal of hygiene, 50, 1013-1025.
Hiroi, J., Kaneko, T., Seikai, T. & Tanaka, M. (1998) Developmental sequence of chloride cells in the body skin and gills of Japanese Flounder (Paralichthys olivaceus) larvae. Zoological science, 15, 455-460.
Ho, N.Y., Yang, L., Legradi, J., Armant, O., Takamiya, M., Rastegar, S. & Strahle, U. (2013) Gene responses in the central nervous system of zebrafish embryos exposed to the neurotoxicant methyl mercury. Environmental science & technology, 47, 3316-3325.
Hopkins, B.C., Hepner, M.J. & Hopkins, W.A. (2013) Non-destructive techniques for biomonitoring of spatial, temporal, and demographic patterns of mercury bioaccumulation and maternal transfer in turtles. Environmental pollution, 177, 164-170.
Horng, J.L., Yu, L.L., Liu, S.T., Chen, P.Y. & Lin, L.Y. (2017) Potassium regulation in Medaka (Oryzias latipes) larvae acclimated to fresh water: passive uptake and active secretion by the skin cells. Scientific reports, 7, 16215.
Hsiao, C.D., You, M.S., Guh, Y.J., Ma, M., Jiang, Y.J. & Hwang, P.P. (2007) A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PloS one, 2, e302.
Janicke, M., Carney, T.J. & Hammerschmidt, M. (2007) Foxi3 transcription factors and notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Developmental biology, 307, 258-271.
Kaneko, T., Shiraishi, K., Katoh, F., Hasegawa, S. & Hiroi, J. (2002) Chloride cells during early life stages of fish and their functional differentiation. Fisheries science, 68, 1-9.
Li, P., Du, B., Chan, H.M. & Feng, X. (2015) Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area, China. Environmental research, 140, 198-204.
Li, P., Feng, X., Qiu, G., Shang, L. & Li, Z. (2009) Mercury pollution in Asia: a review ofthe contaminated sites. Journal of hazardous materials, 168, 591–601.
Lilis, R., Miller, A. & Lerman, Y. (1985) Acute mercury poisoning with severe chronic pulmonary manifestations. Chest, 88, 306-309.
Lin, C.H. & Hwang, P.P. (2016) The control of calcium metabolism in zebrafish (Danio rerio). International journal of molecular sciences, 17, 1873-1889.
Lin, L.Y., Pang, W., Chuang, W.M., Hung, G.Y., Lin, Y.H. & Horng, J.L. (2013) Extracellular Ca2+ and Mg2+ modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca2+ entry in zebrafish hair cells: an in vivo study with the SIET. American journal of physiology. Cell physiology, 305, C1060-1068.
Lin, Y.H., Hung, G.Y., Wu, L.C., Chen, S.W., Lin, L.Y. & Horng, J.L. (2015) Anion exchanger 1b in stereocilia is required for the functioning of mechanotransducer channels in lateral-line hair cells of zebrafish. PloS one, 10, e0117041.
Lin, Y.S., Ginsberg, G., Lin, J.W. & Sonawane, B. (2014) Mercury exposure and omega-3 fatty acid intake in relation to renal function in the US population. International journal of hygiene and environmental health, 217, 465-472.
Macirella, R. & Brunelli, E. (2017) Morphofunctional alterations in zebrafish (Danio rerio) gills after exposure to mercury chloride. International journal of molecular sciences, 18, 824-843.
Montgomery, J.C., Baker, C.F. & Carton, A.G. (1997) The lateral line can mediate rheotaxis in fish. Nature, 389, 960-963.
Murakami, S.L., Cunningham, L.L., Werner, L.A., Bauer, E., Pujol, R., Raible, D.W. & Rubel, E.W. (2003) Developmental differences in susceptibility to neomycin-induced hair cell death in the lateral line neuromasts of zebrafish (Danio rerio). Hearing research, 186, 47-56.
Naidu, K.A., Naidu, K.A. & Ramamurthi, R. (1983) Histological observations in gills of the teleost Sarotherodon mossambicus with reference to mercury toxicity. Ecotoxicology and environmental safety, 7, 455-462.
Olszewski, J., Haehnel, M., Taguchi, M. & Liao, J.C. (2012) Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PloS one, 7, e36661.
Raible, D.W. & Kruse, G.J. (2000) Organization of the lateral line system in embryonic zebrafish. The Journal of comparative neurology, 421, 189-198.
Samson, J.C., Goodridge, R., Olobatuyi, F. & Weis, J.S. (2001) Delayed effects of embryonic exposure of zebrafish (Danio rerio) to methylmercury (MeHg). Aquatic toxicology, 51, 369-376.
Samson, J.C. & Shenker, J. (2000) The teratogenic effects of methylmercury on early development of the zebrafish, Danio rerio. Aquatic toxicology, 48, 343-354.
Senger, M.R., Rosemberg, D.B., Seibt, K.J., Dias, R.D., Bogo, M.R. & Bonan, C.D. (2010) Influence of mercury chloride on adenosine deaminase activity and gene expression in zebrafish (Danio rerio) brain. Neurotoxicology, 31, 291-296.
Shen, W.P., Horng, J.L. & Lin, L.Y. (2011) Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. American journal of physiology. Regulatory, integrative and comparative physiology, 300, R858-868.
Shih, T.H., Horng, J.L., Lai, Y.T. & Lin, L.Y. (2013) Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. American journal of physiology. Regulatory, integrative and comparative physiology, 304, R1130-1138.
Smith, P.J., Hammar, K., Porterfield, D.M., Sanger, R.H. & Trimarchi, J.R. (1999) Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microscopy research and technique, 46, 398-417.
Strungaru, S.A., Robea, M.A., Plavan, G., Todirascu-Ciornea, E., Ciobica, A. & Nicoara, M. (2018) Acute exposure to methylmercury chloride induces fast changes in swimming performance, cognitive processes and oxidative stress of zebrafish (Danio rerio) as reference model for fish community. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, 47, 115-123.
Suli, A., Watson, G.M., Rubel, E.W. & Raible, D.W. (2012) Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PloS one, 7, e29727.
Takahashi, T., Fujimura, M., Koyama, M., Kanazawa, M., Usuki, F., Nishizawa, M. & Shimohata, T. (2017) Methylmercury causes blood-brain barrier damage in rats via upregulation of vascular endothelial growth factor expression. PloS one, 12, e0170623.
Taylor, D.L. & Williamson, P.R. (2017) Mercury contamination in Southern New England coastal fisheries and dietary habits of recreational anglers and their families: Implications to human health and issuance of consumption advisories. Marine pollution bulletin, 114, 144-156.
Teixeira, F.B., Fernandes, R.M., Farias-Junior, P.M., Costa, N.M., Fernandes, L.M., Santana, L.N., Silva-Junior, A.F., Silva, M.C., Maia, C.S. & Lima, R.R. (2014) Evaluation of the effects of chronic intoxication with inorganic mercury on memory and motor control in rats. International journal of environmental research and public health, 11, 9171-9185.
Whitfield, T.T., Riley, B.B., Chiang, M.Y. & Phillips, B. (2002) Development of the zebrafish inner ear. Developmental dynamics : an official publication of the American Association of Anatomists, 223, 427-458.
Wiener, J.G. (2013) Mercury exposed: advances in environmental analysis and ecotoxicology of a highly toxic metal. Environmental toxicology and chemistry, 32, 2175-2178.
Yang, Q., Sun, P., Chen, S., Li, H. & Chen, F. (2017) Behavioral methods for the functional assessment of hair cells in zebrafish. Frontiers of medicine, 11, 178-190.
Zhang, Q.F., Li, Y.W., Liu, Z.H. & Chen, Q.L. (2016) Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae. Aquatic toxicology, 181, 76-85.