簡易檢索 / 詳目顯示

研究生: 曾柏瑋
Tzeng, Bo-Wei
論文名稱: 探討建模取向下國中生二次函數的學習
Exploratory Study on Secondary Students' Learning of Quadratic Function under Modeling Approach
指導教授: 楊凱琳
Yang, Kai-Lin
口試委員: 楊凱琳
Yang, Kai-Lin
王婷瑩
Wang, Ting-Ying
陳建誠
Chen, Jian-Cheng
口試日期: 2022/07/25
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 121
中文關鍵詞: 數學建模二次函數數學理解學習歷程
DOI URL: http://doi.org/10.6345/NTNU202300622
論文種類: 學術論文
相關次數: 點閱:86下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二次函數為國中階段重要的數學概念之一,許多研究卻指出學生在學習二次函數單元容易面臨概念理解與表徵轉換的困難。現今十二年國教課綱中所規範二次函數的學習內容,聚焦在二次函數的意義與圖形特性,減少了情境問題的比例,但二次函數卻又與生活息息相關。
    教師在課堂中常以講述取向結合動態數學軟體的操作,來呈現二次函數式與圖形的變化,較少看到一套完整且有系統的教學活動設計,幫助學生釐清國中二次函數單元的相關概念。因此,本研究期望以自行開發的二次函數建模教材,發展國中生對二次函數單元的理解,並且提升學生的情意態度。
    本研究採個案研究法,旨在探討六名國二資優生在二次函數建模活動中的學習歷程,以及認知、情意的改變。透過學習單、前後測、課堂錄影與訪談記錄等多種資料,以Blum & Leiß(2006)的數學建模循環架構與Pirie & Kieren(1994)的數學理解成長模型分析學習歷程,並探討教師介入類型對學習歷程的影響,再以認知和情意前後測分析認知與情意的改變。
    研究結果顯示二次函數建模活動中,循序漸進式的問題設計有助於學生自行發展二次函數相關概念的理解。從學生的學習歷程中,發現數學化階段為數學建模歷程中最具挑戰性的環節。此外,學生經過二次函數建模活動後,增進對二次函數的概念定義、圖形與極值的理解,並提升二次函數情境問題的解題思考能力。在情意方面,除了自信心提升之外,亦增進學生對課堂的投入程度。

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 5 第三節 名詞界定 5 第二章 文獻探討 7 第一節 數學建模活動的發展 7 第二節 二次函數課程內容分析 14 第三節 二次函數學習與教學之相關研究 20 第四節 診斷教學的意義、方法與成效 25 第五節 數學理解之相關研究 29 第三章 研究方法 35 第一節 研究方法與設計 35 第二節 研究流程 47 第三節 研究場域與對象 50 第四節 資料蒐集與研究工具 53 第五節 資料編碼與分析 62 第四章 研究結果與討論 69 第一節 國中生在二次函數單元的學習歷程 69 第二節 教師介入的類型 90 第三節 國中生在二次函數建模活動後認知與情意的改變 94 第五章 結論與建議 111 第一節 結論與討論 111 第二節 建議 114 參考文獻 116 一、中文部分 116 二、英文部分 118 附錄一 附錄二 附錄三 附錄四 附錄五 附錄六 附錄七 附錄八 附錄九

    王文科、王智弘(2010)。質的研究的信度和效度。彰化師大教育學報,(17),29-50。
    吳宛柔、楊凱琳(2019)。奠基進教室活動設計與成效評估: 縮放繪。臺灣數學教師,40(1),32-49。
    张春兴(1998)。教育心理学: 三化取向的理论与实践。
    李源順(2001)。0.9 的診斷教學實驗。科學教育研究與發展。
    李源順、林福來(2000)。數學教師的專業成長: 教學多元化。師大學報:科學教育類,45(1),1-25。
    林福來(1992)。教與學的整合研究 (II):分數啟蒙的診斷教學。行政院國科會專題研究計畫成果報告, 未發表。
    林福來、黃敏晃、呂玉琴(1996)。分數啟蒙的學習與教學之發展性研究。
    柯慶安(2013)。二次函數數位教學分析與設計之研究。國立臺灣師範大學。未出版。
    徐敏媛(2012)。國中生在二次函數概念上的主要錯誤類型及其補救教學之研究。國立臺灣師範大學。未出版。
    教育部(2018)。十二年國民基本教育課程綱要—總綱。臺北市:教育部。
    教育部(2018)。十二年國民基本教育課程綱要—數學領綱。臺北市:教育部。
    張閔翔(2019)。中學生二次函數學習進程之探究。國立臺灣師範大學。
    梁崇惠, 邱姵萍, & 施皓耀(2009)。開發數學建模的教材。台灣數學教師電子期刊(19),15-34。
    連薏絜(2016)。國小資優生數學建模歷程之個案研究。國立屏東大學。
    陳弘昌、袁媛、李榮耀(2012)。融入動態幾何軟體的合作學習模式對國中學生學習二次函數圖形的影響。國立交通大學。
    陳明宏、呂玉琴(2005)。國小四年級學童分數概念之診斷教學研究。國立台北教育大學學報:數理科技教育類,18,1-32。
    黃楷智(2011)。動態幾何系統 GeoGebra 對數學學習成效與認知診斷影響之研究—以簡易二次函數圖形為例。國立交通大學。
    楊凱琳、林福來、蕭志如(2012)。數學建模評量規準之研究。科學教育學刊,20(4),319-342。
    Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66-72.
    Bloom, B. S. (Ed), Engelhart, M. D., Furst, E. J., Hilll, Walker H., & Krathwohl, D. R. (1956). Taxonomy of educational objectives (The classification of educational goals): Handbook Ⅰ: Cognitive domain. London: Longman.
    Bell, A. (1992). Problem Solving, Mathematical Activity and Learning: The Place of Reflection and Cognitive Conflict. Paper presented at the Mathematical Problem Solving and New Information Technologies, Berlin, Heidelberg.
    Bell, A. W. (1992). Diagnostic teaching. Selected Lectures from the 7th International Congress on Mathematical Education. pp.19-34.
    Bell, A. (1993). Some Experiments in Diagnostic Teaching. Educational Studies in Mathematics, 24(1), 115-137.
    Blum, W. & Leiß, D (2006). “Filling up” – The problem of independence-preserving teacher interventions in lessons with demanding modelling tasks. In M. Bosch (Ed.), European research in mathematics education IV. Proceedings of CERME-4 (pp. 1623-1633). Barcelona: Fundemi IQS, Universitat Ramon Llull.
    Borromeo Ferri, R. (2007). The teachers' ways of handling modelling problems in the classroom – what we can learn from a cognitive-psychological point of view. In: C. Bergsten & B. Grevholm. (Eds.), Developing and Researching Quality in Mathematics Teaching and Learning. (pp. 45-54). Linköping: Skrifterfran.
    Chen, J.-C., Lin, F.-L., Hsu, H.-Y., & Cheng, Y.-H. (2014). Integration of conjecturing and diagnostic teaching: Using proceduralized refutation model as intermediate framework. SHORT ORAL COMMUNICATIONS, 38.
    Cramer, K. A. (2003). Using a translation model for curriculum development and classroom instruction: Models and modeling perspectives on mathematics pr.
    Davis, P. J., Hersh, R., & Marchisotto, E. A. (1995). The mathematical experience. Boston, MA: Birkhäuser.
    Eisenhardt, K. M. (1989). Building Theories from Case Study Research. The Academy of Management Review, 14(4), 532-550.
    Ellis, A. B., & Grinstead, P. (2008). Hidden lessons: How a focus on slope-like properties of quadratic functions encouraged unexpected generalizations. The Journal of Mathematical Behavior, 27(4), 277-296.
    Ferri, R. B. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95.
    Gürel, Z. Ç., & Ahmet, I. (2021). An Analysis of Pre-Service Mathematics Teachers' Behavior on Mathematical Modeling Cycle. Bartın University Journal of Faculty of Education, 10(3), 571-585.
    Haines, C., & Crouch, R. (2007). Mathematical Modelling and Applications: Ability and Competence Frameworks. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education: The 14th ICMI Study (pp. 417-424).
    Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge, UK: Cambridge University Press. doi: 10.1017/CBO9781139171472
    Lesh, R. A., & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching: Routledge.
    Lehrer, R., & Schauble, L. (2003). Origins and evaluation of model-based reasoning in mathematics and science. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 59-70). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    Lin, F.-L. (2006). Designing mathematics conjecturing activities to foster thinking and constructing actively. Paper presented at the Keynote address in the APEC-TSUKUBA International Conference, Japan.
    Lin, F.-L., Yang, K.-L., Lee, K.-H., Tabach, M., & Stylianides, G. (2012). Principles of Task Design for Conjecturing and Proving. In G. Hanna & M. de Villiers (Eds.), Proof and Proving in Mathematics Education: The 19th ICMI Study (pp. 305-325).
    Matsuzaki, A. (2011). Using Response Analysis Mapping to Display Modellers’ Mathematical Modelling Progress. Paper presented at the Trends in Teaching and Learning of Mathematical Modelling, Dordrecht.
    National Council of Teachers of Mathematics, (1989). Curriculum and evaluation standards for school mathematics. Reston, Va: The Council.
    Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education: The 14th ICMI Study (pp. 3-32).
    Nepomucena, T., da Silva, A., Jardim, D., & da Silva, J. (2017). A study about teaching quadratic functions using mathematical models and free software. Paper presented at the Journal of Physics: Conference Series.
    Ortega, M., & Puig, L. (2017). Using modelling and tablets in the classroom to learn quadratic functions. Mathematical Modelling and Applications (pp. 565-575): Springer.
    Piaget, J. (1952). The origins of intelligence in children. New York, NY, US: W W Norton & Co.
    Pirie, S., & Kieren, T. (1989). A Recursive Theory of Mathematical Understanding. For the Learning of Mathematics, 9(3), 7-11.
    Pirie, S. E., & Kieren, T. E. (1992). Watching Sandy's understanding grow. The Journal of Mathematical Behavior, 11(3), 243-257.
    Pirie, S. E. B., & Kieren, T. E. (1994). Growth in mathematical understanding: How can we characterise it and how can we represent it? Educational Studies in Mathematics, 26, 165-190.
    Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics teaching, 77(1), 20-26.
    Yerushalmy, M. (1997). Mathematizing Verbal Descriptions of Situations: A Language to Support Modeling. Cognition and Instruction, 15(2), 207-264.
    Zaslavsky, O. (1997). Conceptual obstacles in the learning of quadratic functions. Focus on learning problems in mathematics, 19, 20-44.
    Zbiek, R. M., & Conner, A. (2006). Beyond Motivation: Exploring Mathematical Modeling as a Context for Deepening Students' Understandings of Curricular Mathematics. Educational Studies in Mathematics, 63(1), 89-112.

    下載圖示
    QR CODE