簡易檢索 / 詳目顯示

研究生: 陳宇儂
Chen, Yu-Nung
論文名稱: 以氣相層析/微哨偵測系統同步監測鐵在發藍處理過程中產生的氫氣濃度變化
On-line Monitoring of Hydrogen Generation in the Process of Steel-Bluing by Gas Chromatography/Milli-whistle System
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 56
中文關鍵詞: 微型氣哨氣相層析儀氫氣生成速率防鏽
英文關鍵詞: black oxidation
DOI URL: http://doi.org/10.6345/NTNU201900201
論文種類: 學術論文
相關次數: 點閱:100下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業上大多以酸洗(黑色氧化)的方式來進行鐵的除銹或防鏽,本研究選用沒食子酸代替業界常用的鹽酸來進行藍染防鏽的實驗。鐵在酸性的環境下會氧化成成二價鐵離子,同時還原溶液中的氫離子並釋放氫氣,其中鐵離子會與沒食子酸進行錯合反應,使得金屬表面形成黑色的四氧化三鐵保護層,藉此防止進一步的氧化生鏽,而由於二價鐵離子與沒食子酸的反應機制複雜,生成的錯合物種類也較為繁多。故本實驗欲簡化以偵測氫氣的方式,進行反應的即時同步監測,儀器選用實驗室自行研發的微哨偵測器,結合氣相層析儀以及全自動進樣系統,過程中會以LabVIEW程式控制進樣流程並搭配NI-4461音效卡進行音頻擷取和數據分析,計算後轉換成氫氣的生成速率,最終以SEM和銹蝕照片的方式討論酸洗處理過後的鐵片,再經浸水氧化的生鏽程度差異,希望藉此得到較佳的防鏽處理配方以延長鋼鐵染黑的使用壽命。

    Most industries use iron pickling (black oxidation) for rust removal or rust prevention. In this study, Gallic acid was used instead of hydrochloric acid for pickling and rust prevention experiments. Iron in the acidic environment will be oxidized into divalent iron ions, while reducing the hydrogen ions in the solution and releasing hydrogen, in which the iron ions will react with gallic acid, resulting in the formation of black iron oxide on the surface of the metal. The protective layer can prevent further oxidative rusting, and due to the complex reaction mechanism of divalent iron ions and gallic acid, the types of complexes generated are also numerous. Therefore, change to hydrogen detection to simplify this experiment.Use a self-developed milli-whistle detector coupled with a gas chromatograph and a self-assembled autosampler was used to perform simultaneous and simultaneous hydrogen detection. The LabVIEW program controls the automatic sample injection process and uses the NI-4461 sound card for audio and data analysis. After calculation, it can be used to calculate the hydrogen generation rate. Finally, the SEM is used to investigate the degree of difference in the immersion water oxidation test after the pickling process. We hope to get better rust treatment method to prolong the service life of steel black.

    目錄 中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 研究目的 1 第二章 研究方法及原理 2 2-1 微哨音波偵測器 2 2-1-1 微哨感測器的偵測原理 3 2-1-2 微哨感測器的製作 8 第三章 儀器、藥品與實驗方法 10 3-1實驗儀器 10 3-1-1微哨式偵測器 13 3-1-2氣相層析儀 15 3-1-3掃描式電子顯微鏡 ( SEM ) 16 3-1-4溫控加熱板 17 3-1-5自組裝自動進樣裝置 18 3-2自動化裝置控制、數據處理與LabVIEW程式編寫 22 3-3 儀器設備與藥品列表 27 第四章 研究過程與結果討論 30 4-1 沒食子酸溶液配置 30 4-2 鐵片樣品處理 31 4-3 鐵片酸洗的反應條件與操作 32 4-4 氫氣檢量線製作 33 4-5 酸洗反應過程 35 4-6 鐵片在反應條件下的防鏽表現 38 4-6-1氫氣產量與酸液濃度、反應溫度和時間對應關係 38 4-6-2氫氣生成速率與酸液濃度、反應溫度和時間對應關係 42 4-6-3 SEM觀察鐵片表面 44 第五章 結論 50 研討會發表 52 參考資料 53 圖目錄 圖 2-1 狹縫音結構 3 圖 2-2 邊稜音結構 3 圖 2-3 空氣柱示意圖 4 圖 2-4 微哨製作流程示意圖 9 圖 3-1 氣相層析/微哨偵測系統搭配自動進樣裝置示意圖 12 圖 3-2 實驗室裝置配置圖 12 圖 3-3 哨子感測器 13 圖 3-4 氣相層析儀 HP 5890 Series II 15 圖 3-5 桌上型電子顯微鏡 16 圖 3-6 恆溫反應槽 17 圖 3-7 裝置裝載模式示意圖 19 圖 3-8 裝置進樣模式示意圖 19 圖 3-9 自動進樣裝置實際照片 20 圖 3-10 自動進樣裝置驅動電路圖 20 圖 3-11 樣品裝載/進樣模式 21 圖 3-12 哨音處理與自動進樣 Front Panel 24 圖 3-13 哨音處理與自動進樣 Block Diagram 24 圖 3-14 LabVIEW資料處理 Front Panel 25 圖 3-15 LabVIEW資料處理 Block Diagram 26 圖 4-1 酸性溶液配置圖 30 圖 4-2 鐵片尺寸 31 圖 4-3 氫氣檢量線vs公式計算 34 圖 4-4 氫氣檢量線 34 圖 4-5 50 ℃, 0.071 M酸性溶液下,反應初始的層析圖譜 35 圖 4-6 50 ℃, 0.071 M酸性溶液下,反應12小時後的層析圖譜 36 圖 4-7 50 ℃, 0.071 M酸性溶液下,反應停止時的層析圖譜 36 圖 4-8 30 ℃, 0.071 M酸性溶液下,連續進樣圖譜 37 圖 4-9 不同濃度、溫度下單位時間氫氣總頻率差 38 圖 4-10 30 ℃ 不同濃度下氫氣總生成量 39 圖 4-11 40 ℃ 不同濃度下氫氣總生成量 40 圖 4-12 50 ℃ 不同濃度下氫氣總生成量 40 圖 4-13 依濃度區分不同溫度下氫氣總生成量 41 圖 4-14 不同濃度、溫度下氫氣總生成量 42 圖 4-15 不同濃度、溫度下單位面積氫氣生成速率 43 圖 4-16 尚未經過處理的鐵片SEM圖 44 圖 4-17 經磨砂處理過後的鐵片SEM圖 44 圖 4-18 30 ℃, 0.018M發藍反應後的鐵片SEM圖 45 圖 4-19 30 ℃, 0.035M發藍反應後的鐵片SEM圖 46 圖 4-20 30 ℃, 0.071M發藍反應後的鐵片SEM圖 46 圖 4-21 30 ℃, 0.071M尚未浸水氧化的鐵片SEM圖 47 圖 4-22 30 ℃, 0.071M經浸水氧化後的鐵片SEM圖 48 圖 4-23 各溫度、酸液濃度下浸水氧化後的鐵片SEM圖 49 圖 5-1 攜帶型微行氣哨偵測器實際圖 51   表目錄 表 3-1 實驗條件 11 表 3-2 藥品列表 27 表 3-3 儀器設備與周邊 28 表 4-1 實驗儀器設定數據 32

    [1]Michael J.Hynes, Máirtı́nÓ Coinceanainn, Journal of Inorganic Biochemistry. 2001, 85(2-3), 131-142
    [2]Li-li Lu, Ying-hua, Li, Xiu-yang Lu, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009, 74(3), 829-834
    [3]Isara Phiwchal, Wiphawee Yuensook, Natsaree Sawaengsiriphon, Saowalak Krungchanuchat, Chalermchai Pilapong, European Journal of Pharmaceutical Sciences. 2018, 114, 64-73
    [4]Lokesh K.N., Channarayappa, Marikunte Venkataranganna, Gunti Gowtham Raj, Hansraj Patil, Hardik Davec, Journal of Trace Elements in Medicine and Biology. 2018, 45, 114-124
    [5]Elisa June Teresa McGee, Levente László Diosady, LWT. 2018, 89, 756-762
    [6]Mamdouh S. Masoud, Alaa E. Ali, Sawsan S. Haggag, Nessma M. Nasr, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014, 120, 505-511
    [7]Abdelatty Mohamed Radalla, ScienceDirect. 2015, 4(2), 174-182
    [8]Huiyu Dong, Carme Sans, Wentao Li, Zhimin Qiang, Separation and Purification Technology. 2016, 171, 144-150
    [9]Dries Knockaert, Katleen Raes, Karin Struijs, Christophe Wille, John Van Camp, LWT. 2014, 55, 335-340
    [10]Wentworth GR1, Al-Abadleh HA, Phys Chem Chem Phys. 2011, 13(14), 6507-16
    [11]Pruncu CI, Azari Z, Casavola C, Pappalettere C, Int Sch Res Notices. 2015, 2015, 594147
    [12]Rouchon V, Duranton M, Burgaud C, Pellizzi E, Lavédrine B, Janssens K, de Nolf W, Nuyts G, Vanmeert F, Hellemans K, Anal Chem. 2011, 83(7), 2589-97
    [13]Lopes GK, Schulman HM, Hermes-Lima M, Biochim Biophys Acta. 1999, 1472(1-2), 142-52
    [14]Singh K, Kumar A, Food Chem. 2018, 265, 96-100
    [15]Cherepanov PV, Rahim MA, Bertleff-Zieschang N, Sayeed MA, O'Mullane AP, Moulton SE, Caruso F, ACS Appl Mater Interfaces. 2018, 10(6), 5828-5834
    [16]Mu X, Yan C, Tian Q, Lin J, Yang S, Int J Nanomedicine. 2017, 12, 7207-7223
    [17]Quici N, Litter MI, Photochem Photobiol Sc. 2009, 8(7), 975-84
    [18]Masoud MS, Ali AE, Haggag SS, Nasr NM, Spectrochim Acta A Mol Biomol Spectrosc. 2014, 120, 505-11
    [19]Yang S, Bai G, Chen L, Shen Q, Diao X, Zhao G, Food Chem. 2014, 157, 302-9
    [20]Nkhili E, Loonis M, Mihai S, El Hajji H, Dangles O, Food Funct. 5(6), 1186-202
    [21]Zeng J, Cheng M, Wang Y, Wen L, Chen L, Li Z, Wu Y, Gao M, Chai Z, Adv Healthc Mater. 2016, 5(7), 772-80
    [22]Mahajan A, Swarnalatha R, Sherwani K, Kumar N, J Med Eng Techno. 43(1), 48-54
    [23]Eichhorn S, Reisinger T, Böhm J3,4, Voss S, Doppler S, Lange R, Krane M, Australas Phys Eng Sci Med. 42(2), 611-617
    [24]Xu Y, Tan Z, Luo Y, Zhongguo Yi Liao Qi Xie Za Zhi. 42(6)431-433
    [25]Zhou H, Yang D, Qiu X, Wu X, Li Y, Appl Microbiol Biotechnol. 97(24), 10309-20
    [26]Dussadee N, Reansuwan K, Ramaraj R, Bioresour Technol. 2014, 155,438-41
    [27]Ben Hsouna A, Ben Halima N, Smaoui S, Hamdi N, Lipids Health Dis. 2017, 16(1),46
    [28]Zareei L, Divband B, Mesbahi A, Khatamian M, Kiani A, Gharehaghaji N, J Biomed Phys Eng. 2019, 9(2), 211-216
    [29]Kiskira K, Papirio S, Mascolo MC, Fourdrin C, Pechaud Y, van Hullebusch ED, Esposito G, i Total Environ. 2019, 8687, 401-412
    [30]Ravines P, Nazarenko AY, Microsc Microanal. 1-15
    [31]Amaral MSS, Marriott PJ, Bizzo HR, Rezende CM, Anal Bioanal Chem. 2018, 410(19), 4615-4632
    [32]Min Cheng, Guangming Zeng, Danlian Huang, Cui Lai, Yang Liu, Chen Zhang, Rongzhong Wang, Lei Qin, Wenjing Xue, Biao Song, Shujing Ye, Huan Yi, Journal of colloid and sciencr. 2018, vol515, 232-239
    [33]Y.Chen, X.H.Chen, Y.W.Liu, Z.N.Yang, Z.Zhang, Journal of Chimical thermodynamics. 2018, vol126, 147-159
    [34]Montgomery JM, Lipp MJ, Rev Sci Instrum. 2019, 90(2), 023903
    [35]Barbesi D, Vicente Vilas V, Millet S, Sandow M, Colle JY, Aldave de Las Heras L, J Radioanal Nucl Chem. 2017, 313(1), 217-227
    [36]Tovar G, Biochem Mol Biol Educ. 2018, 46(1), 39-46
    [37]Acri G, Testagrossa B, Sestito A, Bonanno L, Vermiglio G, Z Med Phys. 2018, 28(1), 6-13
    [38]Vincenzo Aquilanti, Nayara Dantas Coutinho, and Valter Henrique Carvalho-Silva, Philos Trans A Math Phys Eng Sci. 2017, 375(2092)
    [39]Golda RL, Golda MD, Peterson TD, Needoba JA, Data Brief. 2017, 12, 463-470
    [40]Ovejero MC, Pérez Vega-Leal A, Gallardo MI, Espino JM, Selva A, Cortés-Giraldo MA, Arráns R, Rev Sci Instrum. 2017, 88(2), 025104
    [41]Barabas FM1, Masullo LA1, Stefani FD1, Rev Sci Instrum. 2016, 87(12), 126103
    [42]González I, Calderón AJ, Mejías A, Andújar JM, Sensors (Basel). 2016, 16(11)
    [43]Sfakis L1, Kamaldinov T1, Larsen M2, Castracane J1, Khmaladze A3, Tissue Eng Part C Methods. 2016, 22(11), 1028-1037
    [44]Guzel Aydin S, Kaya T, Guler H, Brain Inform. 2016, 3(2), 109-117
    [45]Cui Y, Hanley L, Rev Sci Instrum. 2015, 86(6), 065106
    [46] C. -H.; He, Y. -S.; Lin, C. -H.; Fan, G. -T.; Chen, H. -K., Anal. Sci. 2014, 30, 183-191.
    [47]Fletcher, N. H., J. Acoust. Soc. Am. 1974, 56
    [48]Elder, S. A., J. Acoust. Soc. Am. 1978, 64, 1721-1723,
    [49]Fletcher, N. H., J. Acoust. Soc. Am. 1974, 56
    [50]Coltman, J. W., J. Acoust. Soc. Am. 1976, 3, 725-733.
    [51]Z. Xu et al.; Agriculture, Ecosystems and Environment. 2006, 115, 105–112
    [52]Baskin, C.; C., Baskin, J.M., Academic Press, New York. 1998..
    [53]Taiz, L.; Zeiger,E., PlantPhysiology.MA:bySinauerAssociates,Inc.1998
    [54]S. Luo et al., Scientia Horticulturae. 2017, 221, 73–82
    [55]Costa, M.L.; Civello, P.M.; Chaves, A.R., Martinez, G.A. 2005. E
    [56]Doehlert, D.C.; Kuo, T.M.; Felker, F.C., Plant Physiol. 1988, 86, 1013–1019
    [57]Donald Voet; Judith G. Voet, Biochemistry 4th Edition. 2010, p.797~p.831
    [58]LatiesG.G., AnnRevPlantPhysiol.1982
    [59]Donald Voet; Judith G. Voet, Biochemistry 4th Edition. 2010, p.798
    [60]Delele, M.A.; Nicolai, B.M. Storage of respiratory produce. 2015, European patent.
    [61]Telugu Academi, Botany text book. 2007, p.226~p.274
    [62]Taiz, L.; Zeiger,E.,PlantPhysiology.MA:bySinauerAssociates,Inc.1998
    [63]Bain, J. M.; Mercer, F. V. , L. Aust. J. Biol. Sci.1966, 19, 69-84.
    [64]Gasser, F.; Eppler, T.; Naunheim, W.; Gabioud, S.; Hoehn, E., Acta Hortic. 2008, 796, 69–76.
    [65]Bergholz, K.; Jeltsch, F.; Weiss, L.; Pottek, J.; Geißler, K.; Ristow, M., Oikos. 2015, 124, 1547–1554.
    [66]Bilir, N.; Prescher, F.; Lindgren, D.; Kroon, J., New For.2008, 36, 187–199
    [67]Bladé, C., Vallejo, V.R., 2008. Seed mass effects on performance of Pinus halepensis
    [68]Mill. For. Ecol. Manage. 2007 255, 2362–2372.
    [69]Atherton, J. G. ; Farooque, A. M., Plant. Physiol.1983, 79, 49-67.
    [70]Y. Xu et al., Chemical Engineering Journal. 2016, 299201–208
    [71]D. M.; Dresch et al., American Journal of Plant Sciences. 2014, 5, 2555-2565
    [72]D. Jimenez-Cordero; F. Heras; N. Alonso-Morales; M.A. Gilarranz, J.J. Rodriguez, Biomass Bioenergy. 2013, 299, 123–132.
    [73]Sharma SK. Indian J Plant Physiol. 1997, 2, 171–3.
    [74]Kenneth Connors, Chemical Kinetics. 1990, VCH Publishers
    [75]I. Kranner; L. Colville, Environmental and Experimental Botany. 2011, 72 ,93–105
    [76]M. Nishiyama et al., Chemical Physics Letters. 2009, 482, 332–336
    [77]M. Nishiyama et al., Chemical Physics Letters. 2009, 482, 352–329
    [78]V. Aquilanti et al., Chemical Physics Letters. 2010, 498, 209–213
    [79]Kang, -H.; Lee, W. -S.,J Plant Bio. 2001 , 44(3), 131-140
    [80]Zeng, Q. -L.; Zhou, Q., Journal of Environment Science. 2004, 23, 1073-1076

    下載圖示
    QR CODE