簡易檢索 / 詳目顯示

研究生: 邱建林
Jian-Lin Chiu
論文名稱: 應用多通道史托克接收器於分波多工與極化鍵控光纖通訊系統之研究
Study of WDM/PolSK Fiber-Optic Communication System Based on Multi-Channel Stokes Receiver
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 164
中文關鍵詞: 極化鍵控光纖雷射史托克接收器分波多工邦佳球偏極化光纖環形反射鏡光纖通訊系統
英文關鍵詞: PolSK, Fiber laser, Stokes receiver, WDM, Poincare sphere, Polarization, Fiber loop mirror, Fiber-optic communication system
論文種類: 學術論文
相關次數: 點閱:373下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出利用對稱性共振腔雷射、多工器、相位調變器及自製多通道史托克接收器組成一分波多工與極化鍵控光纖通訊系統。我們利用共振腔原理設計了一個對稱性之共振腔體,產生多波長的單模雷射,並利用相位調變器調變此單模雷射,產生簡易實用的分波多工與極化鍵控系統之訊號源。此外,我們應用單模光纖彎曲、擠壓特性與電子電路之設計,架構了一個多通道偏極化量測分析之史托克接收器,我們可應用此多通道接收器分析偏極化狀態並追尋偏極化擾動之變化軌跡。我們應用此偏極化鍵控光源與多通道接收器進行多層次分波多工與極化鍵控光纖通訊系統傳輸之研究。我們將應用多通道史托克接收器分析不同層次極化鍵控的資料傳輸特性,以評估分析我們所設計之分波多工與極化鍵控系統之特點與可行性。

    In this thesis, we provide a simple but novel solution for WDM/PolSK fiber-optic communication system. We use a 1.3 μm SOA, 1×4 channel WDM MUX/DeMUX, 90:10 2×2 fiber couplers, and 50:50 1×2 fiber couplers to form a WDM symmetric resonator laser. By combining the resonator laser and phase modulators together, we can provide a well performance multi-level WDM/PolSK light source. Besides, we design a multi-channel Stokes receiver as the polarization-state measured WDM/PolSK receiver to track the changes of the SOPs of the WDM/PolSK lightwave. By using the multi-channel Stokes receiver, we can easily observe and analysis the changes of the SOPs. Moreover, we set up a WDM/PolSK fiber-optic transmission experiment with 1Gbps signal. In this experiment, we track the SOP variation by using the multi-channel Stokes receiver. Moreover, we compare the received signal with the initial signal to see the performance of our WDM/PolSK transmission system and check the practicalities of our homemade components in the WDM/PolSK fiber-optic communication system.
    The proposed design of our WDM/PolSK fiber-optic transmission system can serve as another possibility for PolSK signaling for high spectral efficiency and low symbol-rate systems. We can validate this WDM/PolSK scheme as a potential solution for future high-speed modulation format.

    Chinese Abstract…………………………………………………………i English Abstract………………………………...…………………….....ii Acknowledgment………………………………………………………. iv Contents ………………………………………….……….………..….…v List of Figures ………………………………………………...…..….. viii List of Tables ……………………………………….….……….….…xvii Chapter 1 Introduction…………………………………......……1 1-1 Introduction of PolSK Transmission…….........................................……1 1-2 Definition of Polarization and Stokes Parameters…………………….…4 1-2-1 Polarization and the State of Polarization (SOP)…………………4 1-2-2 Stokes Parameters…………………………………...……………6 1-3 Summary……………………………………………………………...….8 Chapter 2 Multi-Wavelength WDM Fiber Laser…..…..…..…10 2-1 The Structure of the Multi-Wavelength Fiber Resonator Laser......……11 2-1-1 Broadband SOA in the Resonator Laser..............................…….11 2-1-2 Description of The Experimental Setup...............................…….12 2-2 Theory of General Laser Resonance………...…....………...…...……..13 2-2-1 E-Field Models of Symmetric Resonator Cavity.................…….14 2-2-1-1 E-Field of the Fiber Loop Mirror………………………14 2-2-1-2 General Theoretical Model of the Symmetric Resonator Laser…………………………………………………20 2-2-2 Numerical Results of Our Symmetric Resonator Laser…….....22 2-3 Experimental Results of Our Symmetric Resonator Lasers………….23 2-3-1 L-I Curve of Symmetric Resonator Laser with Different Driving Current of the SOA ...…………………………………………...23 2-3-2 Experimental Spectrum of the Symmetric Resonator Laser…….25 2-3-3 Analysis of the Stability and the Power Variation of Our CW Laser…………………………………………………………….27 2-4 Polarization State Analysis of the Symmetric Laser…………………28 2-5 Summary.……………...…...…………………………………..………30 Chapter 3 A Multi-Channel Polarization-State Measured Stokes Receiver…….…………………..…..…..…51 3-1 The Structure of the Multi-Channel Stokes Receiver.......…………...…53 3-2 Working Theorem of the Multi-Channel Stokes Receiver…….…..…56 3-3 Calibrations and Performance Analysis of the Multi-Channel Stokes Receiver………………………………………………………………59 3-3-1 Calibrations of the Polarization Analysis Units…………...…….60 3-3-2 Frequency Response and the Transmission Delay of the Homemade Stokes Receiver……………..……………………62 3-4 Experimental Accuracy of Our Stokes Receiver.......………………..…64 3-4-1 Description of the Experimental Setup………………..…...…….65 3-4-2 Analysis of the Accuracy of Our Stokes Receiver….….……...…66 3-5 Summary……………………………………….......………………..…72 Chapter 4 WDM/PolSK Fiber-Optic Communication System………………………………………..…96 4-1 Two Level WDM/Polarization Shift Keying Communication System…………………………………………..........…………...…98 4-1-1 Two-level PolSK Communication System………………….....98 4-1-1-1 Description of Single Wavelength Two-level PolSK Communication System……………………………99 4-1-1-2 Calibration of Stokes Transformation Matrix of the DeMUX………………….…………………………100 4-1-1-3 Experimental Results of 2-PolSK Communication with the Four Wavelengths of Our Fiber Laser………105 4-1-2 Two-Level WDM/PolSK Communication System…………….110 4-2 Four-Level PolSK Fiber-Optic Communication System…….……..111 4-3 Summary……………………………………………………………113 Chapter 5 Conclusions…………………………………………….141 References..…………………………………………………………..144 AppendixⅠ The Relationship between the Elements of the Jones Matrix and a Waveplate…...……………....159 AppendixⅡ The Derivation of Power Intensity of a Symmetric Resonator Laser Constructed of Fiber Loop Mirrors from Electrical Field…...……………….161 Publication Lists ……………………….………………….….….xviii List of Figures Fig. 2-1 The schematic diagram of the fiber ring laser architecture...……………………………………………………..31 Fig. 2-2 The equivalent circuit of symmetric resonator fiber ring laser.….31 Fig. 2-3 All-fiber loop mirror constructed from a fiber coupler.…….…....32 Fig. 2-4 The reflectance as a function of coupling ratio and birefringence of a fiber loop mirror………………………………….........……….32 Fig. 2-5 The transmittance as a function of coupling ratio and birefringence of a fiber loop mirror……..……………………..…….………....33 Fig. 2-6 The fiber laser with all-fiber loop mirror….………………….….33 Fig. 2-7 Experimental setup of the gain profile measurement of the SOA at iSOA= 250mA…………………………………………………...34 Fig. 2-8 The gain profile of the 1.3μm SOA at the iSOA=250 mA………………………………………………….34 Fig. 2-9 The calculation results of the optical response of the output symmetric resonator laser………………….…....…..…………...35 Fig. 2-10 L-I curves of the output laser with different driving current……………………………………...…..……………...35 Fig. 2-11 The output lasing spectrum with driving current of SOA is 90mA…………………………………………………..…………36 Fig. 2-12 The output lasing spectrum with driving current of SOA is 130mA……………………………………………………………36 Fig. 2-13 The output lasing spectrum with driving current of SOA is 170mA……………………………………………………………37 Fig. 2-14 The output lasing spectrum with driving current of SOA is 210mA…………………………………………………………37 Fig. 2-15 The curve of SMSR versus driving current of SOA @ λ=1347.24nm……….………………………………………...38 Fig. 2-16 The curve of SMSR versus driving current of SOA @ λ=1347.94nm……….………………………………………...38 Fig. 2-17 The curve of SMSR versus driving current of SOA @ λ=1348.65nm……….………………………………………...39 Fig. 2-18 The curve of SMSR versus driving current of SOA @ λ=1349.34nm……….………………………………………...39 Fig. 2-19 (a) The optical spectrum of the stability of the output laser @ iSOA= 90mA……………………………………………………..40 Fig. 2-19 (b) The relationship of the stability of the output laser @ iSOA= 90mA……..……………………………………………………..40 Fig. 2-20 (a) The optical spectrum of the stability of the output laser @ iSOA= 130mA……..……………………………………………..41 Fig. 2-20 (b) The relationship of the stability of the output laser @ iSOA= 130mA……..…………………..………………………………..41 Fig. 2-21 (a) The optical spectrum of the stability of the output laser @ iSOA= 170mA……………………………………………………42 Fig. 2-21 (b) The relationship of the stability of the output laser @ iSOA= 170mA ………………………………………………………….42 Fig. 2-22 (a) The optical spectrum of the stability of the output laser @ iSOA= 210mA…………………………………………………43 Fig. 2-22 (b) The relationship of the stability of the output laser @ iSOA= 210mA ………………………………………………………….43 Fig. 2-23 The polarization state measurement with different current of SOA @ λ=1347.24nm………………………………………44 Fig. 2-24 The polarization state measurement with different current of SOA @ λ=1347.94nm………………………………………45 Fig. 2-25 The polarization state measurement with different current of SOA @ λ=1348.65nm………………………………………46 Fig. 2-26 The polarization state measurement with different current of SOA @ λ=1349.34nm………………………………………47 Fig. 2-27 The polarization state variation of the laser with turning the driving current of SOA from 80mA to 250mA...………………48 Fig. 3-1 The schematic diagram of the multi-channel polarization-state measured Stokes receiver…………..……………….……….…...74 Fig. 3-2 The schematic diagram of a single polarization analysis unit ...75 Fig. 3-3 Picture of a finished single polarization analysis unit………….75 Fig. 3-4 The circuit diagram of a single electrical amplified circuit...…....76 Fig. 3-5 The picture of a finished receiver unit……………………..….....76 Fig. 3-6 The picture of the finished single unit of the multi-channel Stokes receiver..……………………………………………………..….77 Fig. 3-7 Illustration of the meanings of the measured output intensities…77 Fig. 3-8 (a) Calibration procedure of the handiwork polarizer HP1 and polarization analyzer PA1 of channel 2 (b) Calibration result of channel 2 on the Poincar sphere (c) Calibration result of channel 2 shown in E-Field diagram………………….......……………...78 Fig. 3-9 (a) Calibration procedure of the handiwork polarizer HP2 and polarization analyzer PA2 of channel 3 (b) Calibration result of channel 3 on the Poincar sphere (c) Calibration result of channel 3 shown in E-Field diagram……………………………..…………79 Fig. 3-10 (a) Calibration procedure of the handiwork polarizer HP3 and polarization analyzer PA3 of channel 4 (b) Calibration result of channel 4 on the Poincar sphere (c) Calibration result of channel 4 shown in E-Field diagram……………………………….……..80 Fig. 3-11 Experimental setup of frequency response measurement of the homemade optical receiver…………………………………...….81 Fig. 3-12 The frequency response of the homemade optical receiver……………………………………………………….…..81 Fig. 3-13 Experimental setup for analyzing the phenomenon of transmission delay of our Stokes receiver……………………………………82 Fig. 3-14 Relative transmission delay of the sixteen channels of our multi- channel Stokes receiver………….……………………………….83 Fig. 3-15 The schematic diagram of accuracy measurement experiment……………………………………………………..84 Fig. 3-16 The initial SOP of the tunable laser source measured by PA430...84 Fig. 3-17 The initial SOP of the tunable laser source measured by our Stokes receiver…………………………………………………………85 Fig. 3-18 The output SOP of the tunable laser source after 100km transmission measured by PA430 without compensation………86 Fig. 3-19 The output SOP of the tunable laser source after 100km transmission measured by Stokes receiver without compensation86 Fig. 3-20 The output SOP of the tunable laser source after 100km transmission measured by PA430 with compensation…………87 Fig. 3-21 The output SOP of the tunable laser source after 100km transmission measured by Stokes receiver with compensation….88 Fig. 3-22 Variation of DOP with or without compensation by using (a) PA430 (b) Stokes receiver (1st Unit)……………………………89 Fig. 3-22 Variation of DOP with or without compensation by using (c) Stokes receiver (2nd Unit) (d) Stokes receiver (3rd Unit)………90 Fig. 3-22(e) Variation of DOP with or without compensation by using Stokes receiver (4th Unit)…………………………………………….....91 Fig. 3-23 (a) Variation of ellipticity with or without compensation by using PA430……………………………………………………………91 Fig. 3-23 Variation of ellipticity with or without compensation by using (b) Stokes receiver (1st Unit) (c) Stokes receiver (2nd Unit)…….92 Fig. 3-23 Variation of ellipticity with or without compensation by using (d) Stokes receiver (3rd Unit) (e) Stokes receiver (4th Unit)……..93 Fig. 4-1 The schematic diagram of 10km single wavelength (λ1 for example) 2-PolSK fiber-optic communication system.………...114 Fig. 4-2 The schematic diagram of the 2-PolSK signal source………115 Fig. 4-3 The schematic diagram of matrix transformation…...…..……116 Fig. 4-4 The basic principle of three-point defined Stokes Transformation Matrix…………………………………………………………116 Fig. 4-5 The three SOPs of the partial polarized laser including polarization controller…………………………….…...…...……………….117 Fig. 4-6 The output three SOPs of the partial polarized laser after passing the first channel of the DeMUX…………………………...……117 Fig. 4-7 The output three SOPs of the partial polarized laser after passing the second channel of the DeMUX………..…….…………….118 Fig. 4-8 The output three SOPs of the partial polarized laser after passing the third channel of the DeMUX………………….……………119 Fig. 4-9 The output three SOPs of the partial polarized laser after passing the fourth channel of the DeMUX……………………………120 Fig. 4-10 The waveform of the input electrical signal…………………121 Fig. 4-11 The lasing spectrum of the optical source after modulation…121 Fig. 4-12 The SOPs of the binary input data of the lasing peaks λ1 = 1347.24nm after being modulated……………………..………122 Fig. 4-13 The SOPs of the binary input data of the lasing peaks λ1 = 1347.24nm after passing through 10km SMF………………..122 Fig. 4-14 The SOPs of the binary input data of the lasing peaks λ1 = 1347.24nm after being compensated………………………123 Fig. 4-15 The SOPs of the binary input data of the lasing peaks λ1 = 1347.24nm after passing through DeMUX……………………123 Fig. 4-16 The SOPs of the binary input data of the lasing peaks λ1 = 1347.24nm after calibration…………………………………124 Fig. 4-17 Waveforms of the input signal and received signals of CH1 to CH4……………………………………………………………124 Fig. 4-18 The SOPs of the binary input data of the lasing peaks λ2 = 1347.94nm after being modulated……………………………125 Fig. 4-19 The SOPs of the binary input data of the lasing peaks λ2 = 1347.94nm after passing through 10km SMF…………………125 Fig. 4-20 The SOPs of the binary input data of the lasing peaks λ2 = 1347.94nm after being compensated…………………………126 Fig. 4-21 The SOPs of the binary input data of the lasing peaks λ2 = 1347.94nm after passing through DeMUX……………………126 Fig. 4-22 The SOPs of the binary input data of the lasing peaks λ2 = 1347.94nm after calibration…………………………………127 Fig. 4-23 Waveforms of the input signal and received signals of CH5 to CH8…………………………………………………………….127 Fig. 4-24 The SOPs of the binary input data of the lasing peaks λ3 = 1348.65nm after being modulated……………………………128 Fig. 4-25 The SOPs of the binary input data of the lasing peaks λ3 = 1348.65nm after passing through 10km SMF…………………128 Fig. 4-26 The SOPs of the binary input data of the lasing peaks λ3 = 1348.65nm after being compensated…………………………129 Fig. 4-27 The SOPs of the binary input data of the lasing peaks λ3 = 1348.65nm after passing through DeMUX……………………..129 Fig. 4-28 The SOPs of the binary input data of the lasing peaks λ3 = 1348.65nm after calibration…………………………………130 Fig. 4-29 Waveforms of the input signal and received signals of CH9 to CH12…………………………………………………………130 Fig. 4-30 The SOPs of the binary input data of the lasing peaks λ4 = 1349.34nm after being modulated……………………………131 Fig. 4-31 The SOPs of the binary input data of the lasing peaks λ4 = 1349.34nm after passing through 10km SMF…………………131 Fig. 4-32 The SOPs of the binary input data of the lasing peaks λ4 = 1349.34nm after being compensated…………………………132 Fig. 4-33 The SOPs of the binary input data of the lasing peaks λ4 = 1349.34nm after passing through DeMUX……………………132 Fig. 4-34 The SOPs of the binary input data of the lasing peaks λ4 = 1349.34nm after calibration…………………………………133 Fig. 4-35 Waveforms of the input signal and received signals of CH13 to CH16……………………………………………………………133 Fig. 4-36 The schematic diagram of 10km two wavelength WDM/2-PolSK fiber-optic communication system……………………………134 Fig. 4-37 The SOPs of the binary input data of the coupled lightwave after being modulated………………………………………………135 Fig. 4-38 The SOPs of the binary input data of the coupled lightwave after passing through 10km SMF……………………………………135 Fig. 4-39 The SOPs of the binary input data of the coupled lightwave after being compensated……………………………………………136 Fig. 4-40 The SOP of the binary input data of the lasing peaks λ1 = 1347.24nm after passing through DeMUX……………………136 Fig. 4-41 The SOP of the binary input data of the lasing peaks λ1 = 1347.24nm after calibration…………………………………137 Fig. 4-42 The SOP of the binary input data of the lasing peaks λ4 = 1349.34nm after passing through DeMUX……………………137 Fig. 4-43 The SOP of the binary input data of the lasing peaks λ4 = 1349.34nm after calibration……………………………………138 Fig. 4-44 The schematic diagram of 10km 4-PolSK fiber-optic communication system by using λ2 = 1347.94nm……………138 Fig. 4-45 The constellation of 4-PolSK after being modulated…………139 Fig. 4-46 The constellation variation of 4-PolSK after passing through the 10km single mode fiber………………………………………139 Fig. 4-47 The constellation of 4-PolSK after being compensated………..140 Fig. 4-48 Illustration of the the received signals comparing with the source signals………………………………………………………….140 List of Tables Table 2-1 The specification of the 1.3μm SOA....…………………….……49 Table 2-2 The relationship between the gain profile and driving current of 1.3μm SOA....……..……………….……………………………49 Table 2-3 The simulation parameters of the fiber resonator laser………….50 Table 3-1 Calibration parameters of all polarization analysis units…….94 Table 3-2 3dB bandwidths of the sixteen channels of the homemade optical receiver………………………………………………………….94 Table 3-3 The comparison of the experimental results between PA430 and our Stokes receiver…………..………………………………….95

    [1] R. Calvani, R. Caponiet and F. Cisternino, “Polarization phase-shift keying: a coherent transmission technique with differential heterodyne detection,” Electron. Lett., vol. 24, pp. 642-643, 1988.
    [2] S. Betti, T. Curti, B. Daino, G. De Marchis and E. Iannone, “State of polarization and phase noise independent coherent optical transmission system based on Stokes parameter detection,” Electron. Lett., vol. 24, pp. 1461-1462, 1988.
    [3] I. Roudas, G.A. Piech, M. Mlejnek, Y. Mauro, D.Q. Chowdhury and M. Vasilyev, “Coherent frequency-selective polarimeter for polarization-mode dispersion monitoring,” J. Lightwave Technol., vol. 22, pp. 953-967, 2004.
    [4] M. Petersson, H. Sunnerud, M. Karlsson and B.-E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photon. Technol. Lett., vol. 16, pp. 686-688, 2004.
    [5] K. Oka and T. Kaneko, “Polarization mapping using birefringent prism,” Proceedings of the 41st SICE Annual Conference (SICE 2002), vol. 4, pp.2508-2509, 2002.
    [6] S. Betti, F. Curti, G. De Marchis and E. Iannone, “Multilevel coherent optical system based on Stokes parameters modulation,” J. Lightwave Technol., vol. 8, pp. 1127-1136, 1990.
    [7] S. Benedetto and P. Poggiolini, “Polarization shift keying: an efficient coherent optical modulation,” Proceeding of SBT/IEEE International Telecommunications Symposium (ITS '90), pp. 2.1.1-2.1.7, 1990.
    [8] CD Poole, NS Bergano, RE Wagner, and HJ Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol., vol. 6, pp. 1185-1190, 1988.
    [9] G. Nicholson and D.G. Temple, “Polarilation fluctuation measurements on istalled single-mode optical fiber cables,” J. Lightwave Technol., vol. 7, p. 1197, 1989.
    [10] S. Benedetto and P. Poggiolini, “Performance evaluation of polarization shift keying modulation schemes,” Electron. Lett., vo1. 26, pp. 244-246, 1990.
    [11] E. Dietrich et al., “Heterodyne transmission of a 560 mbit/s optical signal by means of polarization shift keying,” Electron. Lett., vol. 23, pp. 421-422, 1987.
    [12] S. Benedetto and P. Poggiolini, “Multilevel polarization shift keying: Optimum receiver structure and performance evaluation,” IEEE Trans. Commun., vol. 42, pp. 1174-1186, 1994.
    [13] A.O Dal Forno, A, Paradidi, R. Passy, and J. P. von der eid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 296-298, 2000.
    [14] F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of mueller matrix formalism to obtain optical targets depolarization and polarization,” Proceedings of Quantum Electronics, vol. 21, pp. 109-151, 1997.
    [15] J.-N. Maran, Radan Slavk, Sophie LaRochelle, and Miroslav Karsek, “Chromatic dispersion measurement using a multiwavelength frequency-shifted feedback fiber laser,” IEEE Trans. Instrum. Meas., vol. 53, pp. 67-71, 2004.
    [16] E. Achaerandio, S. Jarabo, S. Abad, and M. Lpez-Amo, “New WDM amplified network for optical sensor multiplexing,” IEEE Photon. Technol. Lett., vol. 11, pp. 1644-1646, 1999.
    [17] J. Yang, K. Zhou, Y. Liu and S. C. Tjin, “Photonics true-time-delay unit for phased-array antenna using multiwavelength fiber laser based on a sagnac interferemetric filter,” International Journal of Infrared and Millimeter Waves, vol. 23, no. 6, pp.891-897, 2002.
    [18] J. L. Yang, S.C. Tjin and N.Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Applied Physics B: Lasers and Optics, vol. 78, pp. 345-349, 2004.
    [19] L. R. Chen, “Multi-wavelength SOA-based fiber ring laser with tunable wavelength spacing using a programmable high-birefringence fiber loop mirror,” IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS'03), Tucson, Arizona, 26-30 October 2003, paper ThFF5.
    [20] L. Boivin, S. Taccheo, C. R. Doerr, P. Schiffer, L. W. Buhl, R. Monnard, and W. Lin, “400 Gb/s transmission (40 Ch.×10 Gb/s) over 544 km from a spectrum-sliced supercontinuum source,” Optical Fiber Communication Conference 2000, vol. 1, pp. 146-148, 2000.
    [21] H. F. Taylor, “Tunable spectral slicing filters for dense wavelength- division multiplexing,” IEEE J. Lightwave Technol., vol. 21, pp. 837-847, 2003.
    [22] L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Optics Lett., vol. 7, no. 6, pp. 288-290, 1982.
    [23] S. N. Savenkov, K. E. Yushtin, B. M. Kolisnychenko, and Y. A. Skoblya, “On the one-to-one correspondence of Mueller and Jones matrix formalisms under nature condition,” International Conference on Mathematical Methods in Electromagnetic Theory (MMET 98), vol. 1, pp. 444-446, 1998.
    [24] P. Urquhart, “Fiber lasers with loop reflectors,” Applied Optics, vol. 28, pp. 3759-3767, 1989.
    [25] P. Delansay, H. Kim and L. Tamil, “Assessment of the performance limitations of a dense WDM metropolitan network in the 1300 nm window using semiconductor optical amplifiers and Raman amplifiers,” The Pacific Rim Conference on Lasers and Electro-Optics, 1999.(CLEO/Pacific Rim '99), vol. 3, pp. 781 - 782, 1999.
    [26] I. Roudas, N. Antoniades, R.E. Wagner, S.F. Habiby and T.E. Stern, “Influence of filtered ASE noise and optical filter shape on the performance of a WADM cascade,” Integrated Optics and Optical Fibre Communications, vol. 2, pp. 143-146, 1997.
    [27] S.L. Zhang, P.M. Lane and J.J. O'Reilly, “Effect of EDFA ASE noise on the performance of millimetre-wave fibre radio communication systems,” Internatonal Topical Meeting on Microwave Photonics, pp. 149-152, 1996.
    [28] J. Bromage, L.E. Nelson, C.H. Kim, P.J. Winzer, R.-J. Essiambre and R.M. Jopson, “Relative impact of multiple-path interference and amplified spontaneous emission noise on optical receiver performance,” Optical Fiber Communication Conference and Exhibit (OFC 2002), pp. 119-120, 2002.
    [29] J. Ing-Fa, L. San-Liang, W. Chi-Yu, L. Lih-Wen and H. Wen-Jeng, “Integrated DWDM laser arrays with stable and high-SMSR wavelengths,” The 4th Pacific Rim Conference on Lasers and Electro-Optics, vol. 2, pp. II-52 - II-53, 2001.
    [30] A.M. Clarke, P.M. Anandarajah and L.P. Barry, “Generation of widely tunable picosecond pulses with large SMSR by externally injecting a gain-switched dual laser source,” IEEE Photon. Technol. Lett., vol. 16, pp. 2344-2346, 2004.
    [31] M. Shtaif and A. Mecozzi, “Polarization-dependent loss and its effect on the signal-to-noise ratio in fiber-optic systems,” IEEE Photon. Technol. Lett., vol. 16, pp. 671-673, 2004.
    [32] Z. Pan, Q. Yu and Y. Arieli, “The effects of XPM-induced fast polarization-state fluctuations on PMD compensated WDM systems,” IEEE Photon. Technol. Lett., vol. 16, pp. 1963-1965, 2004.
    [33] S.M. Pietralunga, J. Colombelli, A. Fellegara and M. Martinelli, “Fast polarization effects in optical aerial cables caused by lightning and impulse current,” IEEE Photon. Technol. Lett., vol. 16, pp. 2583-2585, 2004.
    [34] Y. Sun, I.T. Lima, JR, Hua Jiao, Jiping Wen, Hai Xu, H. Ereifej, C.R. Menyukt and G.M. Carter, “Variation of system performance in a 107 km dispersion managed recirculating loop due to polarization effects,” Summaries of papers presented at the Conference on Lasers and Electro-Optics, 2001. (CLEO '01), 6-11 May, pp. 566-567, 2001.
    [35] T. Sato and S. Miyanaga, “Polarization dependence of phase-conjugate reflectivities in solid films containing randomly oriented saturable dyes,” IEEE J. Quant. Electron., vol. 35, pp. 179-186, 1999.
    [36] J.F. de Boer, S.M. Srinivas, B.H. Park, T.H. Pham, Zhongping Chen, T.E. Milner and J.S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Select. QuanT. Electron., vol. 5, pp. 1200-1204, 1999.
    [37] M.M. Matalgah and R.M. Radaydeh, “Hybrid frequency-polarization shift-keying Modulation for optical transmission,” J. Lightwave Technol., vol. 23, pp. 1152-1163, 2005.
    [38] A. Galtarossa and L. Palmieri, “Reflectometric measurements of polarization properties in optical-fiber links,” IEEE Trans. Instrum. Meas., vol. 53, pp. 86-94, 2004.
    [39] H. Sunnerud, P.A. Andrekson, M. Karlsson, “Optimum receiver decision point in presence of PMD in fiber-optic communication systems,” IEEE Photon. Technol. Lett., vol. 15, pp. 1651-1653, 2003.
    [40] K. S. Hou and J. Wu, “The performance analysis of polarization shift keying optical communication system with differential 4-quadrature scheme,” Global Telecommunications Conference 1999 (GLOBECOM '99), vol. 1b, pp. 686-690, 1999.
    [41] S. Benedetto, R. Olmo and P. Poggiolini, “Trellis coded polarization shift keying modulation for digital optical communications,” IEEE Trans. Commun., vol. 43, pp. 1591-1602, 1995.
    [42] H. Uehara, I. Seto, T. Ohtsuki, I. Sasase and S. Mori, “Impact of local oscillator intensity noise in coherent optical POLSK heterodyne/homodyne receivers,” Processing of IEEE Pacific Rim Conference on Communications, Computers and Signal, vol. 2, pp. 757-760, 1993.
    [43] I. Seto, T. Ohtsuki, H. Yashima, I. Sasase and S. Mori, “Polarization state and phase noise insensitive POLSK phase-diversity homodyne system in coherent optical communications,” IEEE International Conference on Communications, vol. 2, pp. 743-747, 1992.
    [44] H. Uehara, I. Seto, T. Ohtsuki, I. Sasase and S. Mori, “Phase noise insensitive multilevel POLSK based on QAM mapping in coherent optical systems,” Proceeding of Singapore ICCS/ISITA '92 Communications on the Move, vol. 3, pp. 1043-1047, 1992.
    [45] I. Seto, T. Ohtsuki, H. Yshima, I. Sasase and S. Mori, “Coherent optical polarization-shift-keying (POLSK) homodyne system using phase-diversity receivers,” Proceeding of Global Telecommunications Conference 1991 (GLOBECOM '91), vol. 3, pp. 1601-1605, 1991.
    [46] S. Benedetto, P. Poggiolini, R. Calvani and R. Caponi, “Performance evaluation of polarization shift keying modulation systems,” Proceeding of IEEE/OSA Optical Fiber Communications Conference (OFC '90), vol. 1, pp. 134-135, 1990.
    [47] R. M. A. Azzam, I. M. Elminyawi and A. M. El-Saba, “General analysis and optimization of the four-detector photopolarimeter,” Journal of the Optical Society of America A, vol. 5, pp. 681-689, 1988.
    [48] T. J. Chen and T. H. Chu, “A wide-band six-port polarimetric measurement system,” AP-S. Digest of Antennas and Propagation Society International Symposium, vol. 4, pp. 1694-1697, 1995.
    [49] L. Moller and L. Buhl, “Spectral resolved PMD vector monitoring using a scanning Fabry-Perot filter and a polarimeter,” IEEE Lasers and Electro-Optics Society 2000 Annual Meeting (LEOS 2000), vol. 1, pp. 220-221, 2000.
    [50] I. Roudas, G. Piech, M. Mlejnek, Y. Zhu and D.Q. Chowdhury, “Coherent heterodyne frequency-selective polarimeter for error signal generation in higher-order PMD compensators,” Optical Fiber Communication Conference and Exhibit (OFC 2002), pp. 229-301, 2002.
    [51] H. Rosenfeldt, R. Ulrich, U. Feiste, R. Ludwig, H.G. Weber and A. Ehrhardt, “PMD compensation in 10 Gbit/s NRZ field experiment using polarimetric error signal,” Electron. Lett., vol. 36, pp. 448-450, 2000.
    [52] S. Betti, T. Curti, B. Daino, G. De Marchis and E. Iannone, ”State of polarisation and phase noise independent coherent optical transmission system based on Stokes parameter detection,” Electron. Lett., vol. 24, pp. 1460–1461, 1988.
    [53]M. Boroditsky, M. Brodsky, N.J. Frigo, P. Magill and J. Evankow, “Estimation of eye penalty and PMD from frequency-resolved in-situ SOP measurements,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2004 (LEOS 2004), vol. 1, pp. 88-89, 2004.
    [54] P.J. Leo, G.R. Gray, G.J. Simer and K.B. Rochford, “State of polarization changes: Classification and measurement,” J. Lightwave Technol., vol. 21, pp. 2189-2193, 2003.
    [55] P. Westbrook, L. Mller, S. Chandrasekhar, R. Dutta, and S. Wielandy, “Wavelength sensitive polarimeter for multichannel polarization and PMD monitoring,” Proceedings of Optical Fiber Communication Conference 2002 (OFC 2002), vol. 71, pp. WK5-257-WK5-259, 2002.
    [56] A.E. Willner, S.M.R.M. Nezam, L. Yan, Zhongqi Pan and M.C. Hauer, ” Monitoring and control of polarization-related impairments in optical fiber systems,” J. Lightwave Technol., vol. 22, pp. 106-125, 2004.
    [57] Q. Yu, L.-S. Yan, S. Lee, Y. Xie and A.E. Willner, ” Loop-synchronous polarization scrambling technique for simulating polarization effects using recirculating fiber loops,” J. Lightwave Technol., vol. 21, pp. 1593-1600, 2003.
    [58] L.-S. Yan, Q. Yu, Y. Xie and A.E. Willner, “Experimental demonstration of the system performance degradation due to the combined effect of polarization-dependent loss with polarization- mode dispersion,” IEEE Photon. Technol. Lett., vol. 14, pp. 224-226, 2002.
    [59] Y. Sun, I.T. Lima, Jr., Hua Jiao, Jipeng Wen, Hai Xu, H. Ereifej, G.M. Carter and C.R. Menyuk, “Study of system performance in a 107-km dispersion-managed recirculating loop due to polarization effects,” IEEE Photon. Technol. Lett., vol. 13, pp. 966-968, 2001.
    [60] E. Hecht, “Note on an operational definition of the Stokes parameters,” American Journal of Physics, vol. 38, pp.1156-1158, 1970.
    [61] S. Benedetto, R. Gaudino and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Select. Areas Commun., vol. 13, pp. 531-542, 1995.
    [62] T. Shiotsuki, “Application of robust stabilization against time-delay of communication network,” SICE 2003 Annual Conference, vol. 2, pp. 1797-1802, 2003.
    [63] L. Tain-Syh, H. Yuan-Yih, G. Tzong-Yih, L. Jiann-Tyng and H. Chiung-Yi, “ Application of thyristor-controlled series compensators to enhance oscillatory stability and transmission capability of a longitudinal power system,” IEEE Trans. Power Syst., vol. 14, pp. 179-185, 1999.
    [64] R.I. Killey, V. Mikhailov, S. Appathurai and P. Bayvel, “Investigation of nonlinear distortion in 40-Gb/s transmission with higher order mode fiber dispersion compensators,” J. Lightwave Technol., vol. 20, pp. 2282-2289, 2002.
    [65] S. L. Tsao, Y. C. Hsu and H. T. Lee, “Application of A DPC for PMD Compensation in Enviromental Pertured Transmission,” Guangxue Xuebao/ ACTA OPTICA SINICA, vol. 23, pp. 47-48, 2003.
    [66] S. L. Tsao, H. T. Lee and J. L Chiu, “Polarization Compensation in a WDM/PolSK Fiber Communication System with a Dynamic Polarization Compensator,” Pacific Rim Conference on Lasers and Electro-Optics 2005 (CLEO-PR 2005), vol. CTuC3, pp. 32-33, 2005.
    [67] D. Hanson, “Gigabit Ethernet optical fiber standard and its impact on the LAN industry,” IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS '98), vol. 1, pp. 172-173, 1998.
    [68] L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Nowell, “Bandwidth enhancement of multimode fiber Gb/s networks using conditioned launch,” Conference on Lasers and Electro-Optics 1998 (CLEO 98), pp. 396-397, 1998.
    [69] A.M. Mahdy, J.S. Deogun and S.K. Mehta, “End-to-end delay heuristics for adaptive optical wireless networks,” Proceeding of IEEE Computer Society's 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems 2004 (MASCOTS 2004), pp.383-390, 2004.
    [70] S.-G. Park, K.-D. Hong, Y.-S. Jang and K. Kim, “On the WDM Transmissions Using Multilevel (M>4) DPSK Modulation Format,” IEEE Photon. Technol. Lett., vol. 17, pp. 1546-1548, 2005.
    [71] J. Hansryd, J. van Howe and C. Xu, “Nonlinear crosstalk and compensation in QDPASK optical communication systems,” IEEE Photon. Technol. Lett., vol. 16, pp. 1975-1977, 2004.
    [72] J.X. Qiu, D.K. Abe, T.M. Jr. Antonsen, B.G. Danly and B. Levush, “Traveling-wave tube amplifier performance evaluation and design optimization for applications in digital communications with multilevel modulations,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1911-1919, 2003.
    [73] M.S. Kumar, K.N.H. Bhat and G. Umesh, “Multilevel and trellis coded modulation in asynchronous FOCDMA networks,” IEE Proceedings of Optoelectronics, vol. 150, pp. 210-218, 2003.
    [74] A. Dejonghe and L. Vandendorpe, “Turbo-equalization for multilevel modulation: an efficient low-complexity scheme,” IEEE International Conference on Communications 2002 (ICC2002), vol. 3, pp. 1863-1867, 2002.
    [75] R. Noe, D. Sandel and F. Wust, “Polarization mode dispersion tolerance of bandwidth-efficient multilevel modulation schemes,” Optical Fiber Communication Conference 2000, vol. 2, pp. 198-200, 2000.
    [76] Y. M. Lin, M. C. Yuang, S. L. Lee and W.I. Way, “Using Superimposed ASK label in a 10-Gb/s multihop all-optical label swapping system,” J. Lightwave Technol., vol. 22, pp. 351-361, 2004.
    [77] G. Kats and D. Sadot, “A new FSK-based method for coherent optical CDMA systems,” IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications, vol. 1, pp. 194-196, 2000.
    [78] A. Salamon, G. Levy-Yurista, M. Tseytlin, P.S. Cho and I. Shpantzer, “Secure optical communications utilizing PSK modulation, polarization multiplexing and coherent digital homodyne detection with wavelength and polarization agility,” IEEE Military Communications Conference 2003 (MILCOM 2003), vol. 1, pp. 274-282, 2003.
    [79] W. Hung, C. K. Chan, L. K. Chen and F. Tong, “A bit-serial optical packet label-swapping scheme using DPSK encoded labels,” IEEE Photon. Technol. Lett., vol. 15, pp. 1630-1632, 2003.
    [80] J.J. Lepley, J.G. Ellison, S.G. Edirisinghe, A.S. Siddiqui and S.D. Walker, “Excess penalty impairments of polarisation shift keying transmission format in presence of polarisation mode dispersion,” Electron. Lett., vol. 36, pp. 736-737, 2000.
    [81] A. Carena, V. Curri, R. Gaudino, N. Greco, P. Poggiolini and S. Benedetto, “Polarization modulation in ultra-long haul transmission systems: a promising alternative to intensity modulation,” Proceedings of 24th European Conference on Optical Communication, vol. 1, pp. 429 - 430, 1998.
    [82] S. Benedetto, R. Gaudino and P. Poggiolini, “Polarization recovery in optical polarization shift-keying systems,” IEEE Trans. Commun., vol. 45, pp. 1269-1279, 1997.
    [83] R.J. Blaikie, D.P. Taylor and P.T. Gough, “Multilevel differential polarization shift keying,” IEEE Trans. Commun., vol. 45, pp. 95-102, 1997.
    [84] S. Benedetto, R. Gaudino and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Select. Areas Commun., vol. 13, pp. 531-542, 1995.
    [85] M.O. van Deventer and H.G.J. Nagel, “Multilevel polarization shift keying by using data induced polarization switching,” IEEE Photon. Technol. Lett., vol. 5, pp. 475-478, 1993.
    [86] S. Benedetto, and P. Poggiolini, “Theory of polarization shift keying modulation,” IEEE Trans. Commun., vol. 40, pp. 708–721, 1992.
    [87] M. Born and E. Wolf, Principles of optics, Oxford, England: Pergamon Press, pp. 554-556, 1975.
    [88] R.S. Luis and A.V.T. Cartaxo, “Analytical characterization of SPM impact on XPM-induced degradation in dispersion-compensated WDM systems,” J. Lightwave Technol., vol. 23, pp. 1503-1513, 2005.
    [89] N. Kikuchi, K. Sekine, S. Sasaki and T. Sugawara, “Study on Cross-Phase Modulation (XPM) Effect on Amplitude and Differentially Phase-Modulated Multilevel Signals in DWDM Transmission,” IEEE Photon. Technol. Lett., vol. 17, pp. 1549-1551, 2005.
    [90] E. Hu, Y. Hsueh, K. Shimizu, K. Wong, N. Kikuchi, M. Marhic and L. Kazovsky, “4-level direct-detection polarization shift-keying (DD-PolSK) system with phase modulators,” Proceedings of Optical Fiber Communications Conference 2003 (OFC 2003), vol. 2, pp. 647-649, 2003.
    [91] S. Betti, G. De Marchis and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol., vol. 10, pp. 1985-1997, 1992.
    [92] S. Benedetto, A. Djupsjobacka, B. Lagerstrom, R. Paoletti, P. Poggiolini, and G. Mijic, “Multilevel polarization modulation using a specifically designed LiNbO3 device,” IEEE Photon. Technol. Lett., vol. 6, pp. 949-951, 1994.
    [93] S. Betti, F. Curti, G. D. Marchis and E. Iannone, “Phase noise and polarization state insensitive coherent systems,” J. Lightwave Technol., vol. 8, pp. 756-767, 1990.
    [94] F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” J. Lightwave Technol., vol. 12, pp. 690-699, 1994.
    [95] L. Yan, M.C. Hauer, Y. Shi, X.S. Yao, P. Ebrahimi, Y. Wang, A.E. Willner and W.L. Kath, “Polarization-mode-dispersion (PMD) emulator using variable differential-Group-delay (DGD) elements and its use for experimental importance sampling,” J. Lightwave Technol., vol. 22, pp. 1051-1058, 2004.
    [96] L.S. Yan, M. Hauer, A.E. Willner, Y. Shi, X. Yao, W.L. Kath, “Experimental importance sampling using a 3-section PMD emulator with programmable DGD elements,” Proceedings of Optical Fiber Communications Conference 2003 (OFC2003), pp. 421-422, 2003.
    [97] S.M.R.M. Nezam, L.-S. Yan, Y.Q. Shi, A.E. Willner and S. Yao, “Wide-dynamic-range DGD monitoring by partial optical signal spectrum DOP measurement,” Proceedings of Optical Fiber Communications Conference 2002 (OFC 2002), vol. 17-22, pp. 1-5, 2002.
    [98] M. Boroditsky, M. Brodsky, N.J. Frigo, P. Magill and M. Shtaif, “Improving the accuracy of mean DGD estimates by analysis of second-order PMD statistics,” IEEE Photon. Technol. Lett., vol. 16, pp. 792-794, 2004.
    [99] N. Cyr, “Polarization-mode dispersion measurement: generalization of the interferometric method to any coupling regime,” J. Lightwave Technol., vol. 22, pp. 794-805, 2004.
    [100] X. Wei, A.H. Gnauck, D.M. Gill, X. Liu, U.-V. Koc, S. Chandrasekhar, G. Raybon and J. Leuthold, “Optical /spl pi//2-DPSK and its tolerance to filtering and polarization-mode dispersion,” IEEE Photon. Technol. Lett., vol. 15, pp. 1639-1641, 2003.
    [101] N. Kaneda, Liu Xiang, Zheng Zheng, Wei Xing, M. Tayahi, M. Movassaghi and D. Levy, “Improved polarization-mode-dispersion tolerance in duobinary transmission,” IEEE Photon. Technol. Lett., vol. 15, pp. 1005-1007, 2003.
    [102] S.J. Savory and F.P. Payne, “Pulse propagation in fibers with polarization-mode dispersion,” J. Lightwave Technol., vol. 19, pp. 350-357, 2001.
    [A1] Keigo Iizuka, Elements of Photonics , vol. 1, Wiley, New York, 2002.

    QR CODE