簡易檢索 / 詳目顯示

研究生: 蔡辰璋
Tsai, Chen-Chang
論文名稱: 透過自行車戶外騎乘數據分析騎乘者功率
Analyzing the power through the data collection from outdoor riding
指導教授: 相子元
Shiang, Tzyy-Yuang
口試委員: 陳家祥
Chen, Jia-Xiang
許維君
Hsu, Wei-Chun
相子元
Shiang, Tzyy-Yuang
口試日期: 2023/07/17
學位類別: 碩士
Master
系所名稱: 樂活產業高階經理人企業管理碩士在職專班
Executive Master of Business Administration Program in Lifestyles of Health and Sustainability
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 38
中文關鍵詞: 功能性閾值功率室內騎乘戶外騎乘
英文關鍵詞: Functional Threshold Power, Indoor Cycling, Outdoor Cycling
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301738
論文種類: 學術論文
相關次數: 點閱:94下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功能性閾值功率 (FTP) 是自行車的一個重要的指標,用於評估騎乘者的表現能力並且依此制定訓練計劃。FTP代表騎乘者在全力衝刺中能夠持續產生的功率值。過去的研究已經表明,FTP值與騎乘者的耐力和競速能力密切相關,因此評估FTP值對於提升騎乘表現至關重要。然而,對於一些騎乘者來說,這可能是一項艱鉅的挑戰。FTP測試結果也可能受到當天身體狀態的影響而造成偏差。因此,利用平日騎乘訓練的數據作為FTP的預測的資料來源,不僅可以隨時監測體能狀態,同時也不會對運動員造成太大的負擔。目的:本研究的目的是比較室內FTP值和戶外騎行數據預估的FTP值。透過這項研究,我們希望為自行車騎手和教練提供關於訓練和表現能力的有用信息。方法:研究對象為有運動習慣的一般人。首先,受試者在實驗室進行3分鐘的全力衝刺測試,以獲得個人的FTP值。然後,受試者分別進行室外平路和上坡騎乘,並記錄相關數據。我們使用30秒和60秒的移動平均功率來計算FTP值,並進行統計分析。結果:研究結果顯示,室內和戶外騎行數據中的FTP值之間存在顯著相關性,這表明戶外騎行所得到的FTP值可以提供關於個人表現能力的重要信息。然而,在不同坡度條件下,特別是上坡時,FTP值存在顯著差異。結論:通過定期進行FTP測試,騎手可以監測自己的表現能力並確定改進的領域。然而,需要注意的是室內和戶外騎行數據之間仍然存在一些微小的差異。因此,在制定訓練計劃和評估能力時,應進行調整。本研究為自行車騎手和教練提供了重要的參考信息,幫助他們更好地了解表現能力並制定訓練目標。

    Functional Threshold Power (FTP) is an important indicator in cycling used to assess a rider's performance and develop training plans accordingly. FTP represents the sustained power output a rider can generate during an all-out sprint. Previous research has shown a close correlation between FTP values and a rider's endurance and competitive ability, making the evaluation of FTP crucial for improving cycling performance. However, for some riders, this can be a challenging task. Additionally, FTP test results may be influenced by the rider's physical condition on a given day, resulting in deviations. Therefore, utilizing regular training data as a predictive source for FTP, obtained from everyday cycling sessions, not only allows for continuous monitoring of fitness levels but also minimizes the burden on athletes. The aim of this study is to compare indoor FTP values with estimated FTP values based on outdoor riding data. Through this research, we hope to provide valuable information regarding training and performance capabilities for cyclists and coaches. The study participants consisted of physically active individuals. Firstly, subjects underwent a 3-minute all-out sprint test in the laboratory to determine their individual FTP values. Subsequently, participants engaged in outdoor rides on both flat and uphill terrains while recording relevant data. We calculated FTP values using 30-second and 60-second moving average power and conducted statistical analysis. The results of the study demonstrate a significant correlation between FTP values derived from indoor and outdoor riding data, indicating that FTP values obtained from outdoor rides can provide crucial information about an individual's performance capabilities. However, notable differences in FTP values were observed under different gradient conditions, particularly during uphill riding. Regular FTP testing allows riders to monitor their performance capabilities and identify areas for improvement. However, it is important to note that some minor differences still exist between indoor and outdoor riding data. Therefore, adjustments should be made when formulating training plans and evaluating performance. This study provides important reference information for cyclists and coaches, aiding them in gaining a better understanding of performance capabilities and setting training goals.

    第壹章 緒論 .............................................................................................................. 1 第一節 前言 .............................................................................................................. 1 第二節 研究背景 ..................................................................................................... 2 第三節 研究目的 ..................................................................................................... 3 第四節 研究範圍與限制 ......................................................................................... 3 第五節 名詞操作性定義 ......................................................................................... 4 第六節 研究之重要性 ............................................................................................. 4 第貳章 文獻探討 ...................................................................................................... 6 第一節 功能性閾值功率的重要性 ........................................................................ 6 第二節 功能性閾值功率的測量方式 .................................................................... 7 第三節 功能性閾值功率的應用 ............................................................................. 7 第四節 簡易估計FTP方法 ....................................................................................... 9 第五節 文獻探討總結 ............................................................................................... 9 第參章 研究方法 ..................................................................................................... 10 第一節 實驗參與者 ................................................................................................. 10 第二節 實驗設備 ...................................................................................................... 10 第三節 實驗流程 ...................................................................................................... 12 第四節 資料處理 ...................................................................................................... 13 第五節 統計分析 .................................................................................................... 14 第肆章 結果 ............................................................................................................. 14 第一節 受試者K值 .................................................................................................. 14 第二節 室內與戶外結果之相關性 ...................................................................... 15 第三節 室內與戶外結果之差異與誤差 ............................................................. 22 第伍章 研究討論 ..................................................................................................... 30 第一節 FTP值與騎乘表現的相關性 .................................................................... 30 第二節 室內與戶外騎乘的比較 ............................................................................ 31 第三節 坡度對FTP數據的影響 ............................................................................. 31 第四節 研究限制和未來研究方向 ....................................................................... 32 第陸章 結論 ............................................................................................................. 33 引用文獻 .................................................................................................................. 34 附錄一 受試者實驗需知 ....................................................................................... 36 附錄二 受試者同意書 ........................................................................................... 37 附錄三 受試者基本資料表 .................................................................................. 37

    李尹鑫、陳家祥、嚴笠哲、相子元 (2018)。自行車踩踏功率的應用與發展。體育學報,51(2),145-154。

    Allen, H., Coggan, A. (2010). Training and Racing with a Power Meter, 3rd ed. Velo Press: Boulder, CO, USA.

    Bishop, D., Jenkins, D. G., & Mackinnon, L. T. (1998). The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Medicine & Science in Sports & Exercise, 30(8), 1270-1275.

    Borszcz, F. K., Tramontin, A. F., Bossi, A. H., Carminatti, L. J., & Costa, V. P. (2018). Functional threshold power in cyclists: validity of the concept and physiological responses. International Journal of Sports Medicine, 39(10), 737-742.

    Borszcz, F. K., Tramontin, A. F., & Costa, V. P. (2019). Is the functional threshold power interchangeable with the maximal lactate steady state in trained cyclists?. International Journal of Sports Physiology and Performance, 14(8), 1029-1035.

    Bossi, A. H., Lima, P., Lima, J. P. D., & Hopker, J. (2017). Laboratory predictors of uphill cycling performance in trained cyclists. Journal of Sports Sciences, 35(14), 1364-1371.

    Burnley, M., Doust, J. H., & Vanhatalo, A. (2006). A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Medicine & Science in Sports & Exercise, 38(11), 1995-2003.

    Carmichael, C., Rutberg, J. (2012). The Time-Crunched Cyclist: Fit., Fast, and Powerful in 6 Hours a Week. Velo Press: Boulder, CO, USA.

    Denham, J., Scott-Hamilton, J., Hagstrom, A. D., & Gray, A. J. (2020). Cycling power outputs predict functional threshold power and maximum oxygen uptake. The Journal of Strength & Conditioning Research, 34(12), 3489-3497.

    Figueira, T. R., Caputo, F., Pelarigo, J. G., & Denadai, B. S. (2008). Influence of exercise mode and maximal lactate-steady-state concentration on the validity of OBLA to predict maximal lactate-steady-state in active individuals. Journal of Science and Medicine in Sport, 11(3), 280-286.

    Hill, D. W. (1993). The critical power concept: a review. Sports Medicine, 16, 237-254.

    Inglis, E. C., Iannetta, D., Passfield, L., & Murias, J. M. (2019). Maximal lactate steady state versus the 20-minute functional threshold power test in well-trained individuals:“Watts” the big deal? International Journal of Sports Physiology and Performance, 15(4), 541-547.

    Jakobsson, J., & Malm, C. (2019). Maximal lactate steady state and lactate thresholds in the cross-country skiing sub-technique double poling. International Journal of Exercise Science, 12(2), 57-68.

    Jeffries, O., Simmons, R., Patterson, S. D., & Waldron, M. (2021). Functional threshold power is not equivalent to lactate parameters in trained cyclists. Journal of Strength & Conditioning Research, 35(10), 2790-2794.

    Karsten, 4th Science & Cycling Conference, 28-29 June 2017, Düsseldorf, Germany. J Sci Cycling. Vol. 6(3), 41-42.

    Klika, R. J., Alderdice, M. S., Kvale, J. J., & Kearney, J. T. (2007). Efficacy of cycling training based on a power field test. The Journal of Strength & Conditioning Research, 21(1), 265-269.

    MacInnis, M. J., Thomas, A. C., & Phillips, S. M. (2019). The reliability of 4-minute and 20-minute time trials and their relationships to functional threshold power in trained cyclists. International Journal of Sports Physiology and Performance, 14(1), 38-45.

    McGrath, E., Mahony, N., Fleming, N., Donne, B. (2019). Is the ftp test a reliable, reproducible and functional assessment tool in highly trained athletes? International Journal of Exercise Science, 12(4), 1334–1345.

    Nimmerichter, A., Williams, C., Bachl, N., & Eston, R. (2009). Evaluation of a field test to assess performance in elite cyclists. International Journal of Sports Medicine, 31(3), 160-166.

    Novak, A. R., Bennett, K. J., Pluss, M. A., Fransen, J., Watsford, M. L., & Dascombe, B. J. (2019). Power profiles of competitive and noncompetitive mountain bikers. The Journal of Strength & Conditioning Research, 33(2), 538-543.

    Pinot, J., & Grappe, F. (2011). The record power profile to assess performance in elite cyclists. International Journal of Sports Medicine, 32(11), 839-844.

    Sanders, D., Taylor, R. J., Myers, T., & Akubat, I. (2020). A field-based cycling test to assess predictors of endurance performance and establishing training zones. The Journal of Strength & Conditioning Research, 34(12), 3482-3488.

    Valenzuela, P. L., Morales, J. S., Foster, C., Lucia, A., & de la Villa, P. (2018). Is the functional threshold power a valid surrogate of the lactate threshold?. International Journal of Sports Physiology and Performance, 13(10), 1293-1298.

    下載圖示
    QR CODE