簡易檢索 / 詳目顯示

研究生: 劉菊芬
Chu-Fen Liu
論文名稱: 巨量資料技術於推薦系統之創新應用 --以Netflix 為例
Innovative Applications of Recommend System in Big Data - The Case of Netflix
指導教授: 施人英
Shih, Jen-Ying
學位類別: 碩士
Master
系所名稱: 高階經理人企業管理碩士在職專班(EMBA)
Executive Master of Business Administration
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 54
中文關鍵詞: 巨量資料推薦系統個人化
英文關鍵詞: Big data, Recommend System, Personalization
DOI URL: https://doi.org/10.6345/NTNU202205477
論文種類: 學術論文
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 巨量資料目前已經普及到各種商業領域的運用,例如線上電子商務業者透過網路使用者的上網行為進行精準行銷、銷售;流通業用來作為消費者購物分析、電信業用以掌握行動用戶等。企業在巨量資料的應用目的,就是將資訊轉換為收益,在運用方式上,首先要瞭解企業面臨的議題,或者有一個新的概念想法要去驗證是否可行,之後針對相關議題進行資料收集。資訊儲存匯整後最重要的就是將這些資料進行處理分析,探索找尋出可能的趨勢或企業想要解答的問題。利基於既有的資料探勘技術結合不同分析演算法的推薦系統具有良好的發展方向和應用前景。推薦系統於瞭客戶的同時也提高了顧客對商務活動的滿意度,換來對商務網站的進一步支持使用。因此,近年來推薦系統在電子商務的應用越來越多,幾乎所有大型的電子商務及企業各線上服務系統,如Amazon、eBay、博客來、Netflix等,都有不同程度的使用了各種形式的推薦系統。各種提供個性化服務的網站也需要推薦系統的大力支持。在日趨激烈的競爭環境下,個人化推薦系統能有效挽留使用者,提高企業商業系統的銷售。成功的商業推薦系統會產生巨大的經濟效益,但隨著企業商業模式的進一步發展演進,不同企業在選用推薦系統也同樣面臨一系列挑戰。在選用推薦系統也同樣面臨一系列挑戰,本研究將以KDD(Knowledge Discovery and Data Mining)組織所研究發展演算理論及應用分析技術為基礎,探討如何透過不同推薦演算法技術如基於內容推薦法(Content-Based Recommendation)及協同過濾(Collaborative Filtering Recommendation) 挖掘巨量資料應用。其次,將以近年來所發展的出巨量資料應用技術,進行說明在商業服務的應用有效性與個案分析探討。文末將歸納上述探討結果,提出基於不斷演進的商務個人化服務技術的發展,社會與經濟價值終將創造更進一步的發展與提升。

    The world has become excited about big data and advanced analytics not just because the data are big but also the potential impact driven by it. Many research reports have shown that the ability of mastermind the data analytics is one of the key foundations and driven factors that leads the successful companies such as Amazon, Google and Netflix (in which will be the case study in this research) ahead of others. Unfortunately for most of the conventional companies, the data-analytics success merely refers to running a few tests such as focus group, calculation in Excel, or business model. Very few realize the real potential of the big data and advanced analytics.

    In this research, it shows that recommendation algorithms provide an effective form of targeted marketing by creating a personalized experience for each customer. For large retailers like Amazon.com, a good recommendation system is scalable over very large customer base and product catalogs. As one of the most successful approaches to building recommender systems, collaborative filtering uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. It then presents three main categories of collaborative filtering techniques: memory-based, model-based, and hybrid collaborative filtering algorithms, with examples for representative algorithms of each category, and analysis of their predictive performance and their ability to address the challenges.

    The online video streaming company, Netflix, is one of the most reputed in utilizing collaborative filtering algorithms to predict user ratings for films based on previous ratings. This research has shown how Netflix has implemented a new generation of recommendation algorithms emerged, and demonstrates how the accuracy of prediction yields to the immeasurable influence of personalized recommendation hence benefiting its related business. Devices and ecosystem apps generate huge amounts of fast-moving data in a variety of forms nowadays and customers expect to receive value from the use of their data. A company that is skilled in analytics and can successfully convince its customers that it can provide such user value will out-win those who could not. Organizations that control and drive the most benefits from the data will eventually win.

    目錄       中文摘要 ……………………………………………………………… ii 英文摘要 ……………………………………………………………… iii 誌謝 ……………………………………………………………… iv 圖目錄 ……………………………………………………………… v 表目錄 ……………………………………………………………… vi 第一章 緒論………………………………………………………… 1 第一節 引言………………………………………………………… 1 第二節 國內外發展現狀…………………………………………… 2 第三節 研究內容與結構…………………………………………… 4 第四節 研究目的…………………………………………………… 4 第二章 巨量資料與資料探勘技術………………………………… 6 第一節 巨量資料發展與結構……………………………………… 6 第二節 資料探勘技術……………………………………………… 10 第三節 巨量資料探勘與推薦系統………………………………… 13 第三章 常見推薦系統概述與主流演算法的關連對比 15 第一節 推薦系統概念和形式化定義……………………………… 15 第二節 現有的推薦系統演算法…………………………………… 16 第三節 推薦系統的核心與挑戰…………………………………… 21 第四節 推薦系統熱門研究發展方向……………………………… 24 第四章 應用案例探討—Netflix…………………………………… 27 第一節 個案研究方法 …………………………………………… 27 第二節 個案公司簡介 …………………………………………… 28 第三節 個案巨量資料商業應用說明…………………… 30 第四節 個案巨量資料應用分析…………………………………… 32 第五節 個案討論…………………………………………………… 42 第五章 結論與建議………………………………………………… 45 第一節 競爭對手的競合分析 …………………………………… 45 第二節 結論 ……………………………………………………… 46 第三節 未來建議 ………………………………………………… 47 第四節 研究限制 ………………………………………………… 48 參考文獻 ……………………………………………………………… 49

    [1] http://www.idc.com/prodserv/FourPillars/Cloud/index.jsp
    [2]http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf, 1
    [3] Vital Wave Consulting, World Economic Forum: “Big Data, Big Impact:
    New Possibilities for International Development”, 2012: 6-7.
    [4]http://big5.ce.cn/gate/big5/intl.ce.cn/specials/zxgjzh/201206/01/t20120601_23371639.shtml
    [5] GE and Accenture Alliance: Industrial Internet Insights Report for 2015, 15-6,4-19.
    [6] http://www.gartner.com/it-glossary/big-data/
    [7] http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504767
    [8]Laney, D. 3D Data Management: Controlling Data Volume, Velocity and Variety. Gartner,2001-02-06.
    [9] http://www.kdd.org,1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining. KDD 1995-1998.
    [10] http://zh.wikipedia.org/wiki/Apache_Hadoop
    [11]李瑞. 蟻群聚類演算法及其在推薦系統中的應用[D]. 西南師範大學,2005.
    [12]Han, Jiawei, and Micheline Kamber. Data Mining, Southeast Asia Edition: Concepts and Techniques. Morgan kaufmann, 2006.
    [13]Resnick, Paul, and Hal R. Varian. "Recommender systems." Communications of the ACM 40.3 1997: 56-58.
    [14] Adomavicius G, Tuzhilin A. "Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. " IEEE Trans. on Knowledge and Data Engineering, 2005, 17(6):734−749.
    [15]Balabanovic M., and Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997, 40(3):66−72.
    [16] Schafer, J. Ben, J. K. and Riedl, J. "Recommender systems in e-commerce." Proceedings of the 1st ACM conference on Electronic commerce. ACM, 1999.
    [17] Mooney, Raymond J., and Loriene Roy. "Content-based book recommending using learning for text categorization." Proceedings of the fifth ACM conference on Digital libraries. ACM, 2000.
    [18] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005, 17(6):734−749.
    [19] Somlo G, Howe A. Adaptive lightweight text filtering. In: Proc. of the 4th Int’l Symp. on Intelligent Data Analysis. Berlin, Heidelberg: Springer-Verlag, 2001: 319−329.
    [20] Zhang Y, Callan J, Minka T. Novelty and redundancy detection in adaptive filtering. In: Proc. of the 25th Annual Int’l ACM SIGIR Conf. New York: ACM Press, 2002: 81−88.
    [21] Robertson S. Threshold setting and performance optimization in adaptive filtering. Information Retrieval, 2002, 5(2-3):239−256.
    [22] Zhang Y, Callan J. Maximum likelihood estimation for filtering thresholds. In: Proc. of the 24th Annual Int’l ACM SIGIR Conf. New York: ACM Press, 2001: 294−302.
    [23]Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4):329−354.
    [24]Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61−70.
    [25]Konstan JA, Miller BN, Maltz D, Herlocker JL, Gordon LR, Riedl J. GroupLens: Applying collaborative filtering to usenet news. Communications of the ACM, 1997, 40(3):77−87.
    [26] Terveen L, Hill W, Amento B, McDonald D, Creter J. PHOAKS: A system for sharing recommendations. Communications of the ACM, 1997, 40(3):59−62.
    [27]Goldberg K, Roeder T, Gupta D, Perkins C. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 2001,4(2):133−151.
    [28]Breese JS, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. Technical Report, MSR-TR-98-12, Redmond: Microsoft Research, 1998.
    [29]Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734−749.
    [30] Breese JS, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. Technical Report, MSR-TR-98-12, Redmond: Microsoft Research, 1998.
    [31 ] Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994: 175−186.
    [32] Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proc. of the 10th Int’l WWW Conf. New York: ACM Press, 2001: 285−295.
    [33] Breese JS, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. Technical Report, MSR-TR-98-12, Redmond: Microsoft Research, 1998.
    [34] Delgado J, Ishii N. Memory-Based weighted-majority prediction for recommender systems. In: Proc. of the ACM SIGIR’99 Workshop Recommender Systems: Algorithms and Evaluation. New York: ACM Press, 1999.
    [35] Getoor L, Sahami M. Using probabilistic relational models for collaborative filtering. In: Proc. of the Workshop Web Usage Analysis and User Profiling. 1999.
    [36] Pavlov D, Pennock D. A maximum entropy approach to collaborative filtering in dynamic, sparse, high-dimensional domains. In: Proc. of the 16th Annual Conf. on Neural Information Processing Systems. 2002.
    [37] Shani G, Brafman R, Heckerman D. An MDP-based recommender system. The Journal of Machine Learning Research, 2005, 6:1265−1295.
    [38] Hofmann T. Collaborative filtering via Gaussian probabilistic latent semantic analysis. In: Proc. of the 26th Int’l ACM SIGIR Conf. New York: ACM Press, 2003: 259−266.
    [39] Marlin B. Modeling user rating profiles for collaborative filtering. In: Proc. of the 17th Annual Conf. on Neural Information Processing Systems. Cambridge: MIT Press, 2003: 627−634.
    [40] Blanco-Fern#westeur034#ndez, Yolanda, et al. "A flexible semantic inference methodology to reason about user preferences in knowledge-based recommender systems." Knowledge-Based Systems 21.4, 2008: 305-320.
    [41] Burke R. Knowledge-Based recommender systems. Encyclopedia of Library and Information Systems, 2000,69(32):180−200.
    [42] Middleton SE, Shadbolt NR, de Roure DC. Ontological user profiling in recommender systems. ACM Trans. on Information Systems, 2004, 22(1):54−88.
    [43] Pazzani M. A framework for collaborative, content-based, and demographic filtering. Artificial Intelligence Review, 1999,13(5-6): 393−408.
    [44] Claypool M, Gokhale A, Miranda T, Murnikov P, Netes D, Sartin M. Combining content-based and collaborative filters in an online newspaper. In: Proc. of the ACM SIGIR’99 Workshop Recommender Systems: Algorithms and Evaluation. New York: ACM Press, 1999.
    [45] Pazzani M. A framework for collaborative, content-based, and demographic filtering. Artificial Intelligence Review, 1999,13(5-6): 393−408.
    [46] Billsus D, Pazzani M. User modeling for adaptive news access. User Modeling and User-Adapted Interaction, 2000,10(2-3): 147−180.
    [47] Soboroff I, Nicholas C. Combining content and collaboration in text filtering. In: Proc. of the Int’l Joint Conf. on Artificial Intelligence Workshop: Machine Learning for Information Filtering. Stockholm, 1999: 86−91.
    [48] Good N, Schafer JB, Konstan JA, Borchers A, Sarwar B, Herlocker JL, Riedl J. Combining collaborative filtering with personal agents for better recommendations. In: Proc. of the 16th National Conf. on Artificial Intelligence. Menlo Park: AAAI Press, 1999: 439−446.
    [49] Melville P, Mooney RJ, Nagarajan R. Content-Boosted collaborative filtering for improved recommendations. In: Proc. of the 18th National Conf. on Artificial Intelligence. Menlo Park: American Association for Artificial Intelligence, 2002: 187−192.
    [50] Basu C, Hirsh H, Cohen W. Recommendation as classification: Using social and content-based information in recommendation. In: Proc. of the AAAI’98. Menlo Park: AAAI Press, 1998: 714−720.
    [51] Ansari A, Essegaier S, Kohli R. Internet recommendations systems. Journal of Marketing Research, 2000, 37(3):363−375.
    [52] Miller BN, Albert I, Lam SK, Konstan JA, Riedl J. MovieLens unplugged: Experiences with an occasionally connected recommender system. In: Proc. of the Int’l Conf. on Intelligent User Interfaces. New York: ACM Press, 2003: 263−266.
    [53] EachMovie collaborative filtering dataset 1997. http://research.compaq.com/SRC/eachmovie
    [54] http://www.bookcrossing.com/
    [55] Goldberg K, Roeder T, Gupta D, Perkins C. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 2001,4(2):133−151.
    [56] http://www.netflix.com/
    [57] http://www.newsgroups.com/
    [58] Ding, Chris, et al. "A learning framework using Green's function and kernel regularization with application to recommender system." Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2007.
    [59] https://archive.ics.uci.edu/ml/datasets.html
    [60] Shardanand, Upendra, and Pattie Maes. "Social information filtering: algorithms for automating “word of mouth”." Proceedings of the SIGCHI conference on Human factors in computing systems. ACM Press/Addison-Wesley Publishing Co., 1995: 210-217.
    [61] Sheth, Beerud, and Pattie Maes. "Evolving agents for personalized information filtering." Artificial Intelligence for Applications, 1993. Proceedings., Ninth Conference on. IEEE, 1993.
    [62] Yu, Kai, et al. "Probabilistic memory-based collaborative filtering." Knowledge and Data Engineering, IEEE Transactions on 16.1, 2004: 56-69.
    [63] Rashid, Al Mamunur, George Karypis, and John Riedl. "Learning preferences of new users in recommender systems: an information theoretic approach." ACM SIGKDD Explorations Newsletter 10.2, 2008: 90-100.
    [64] Sarwar, Badrul, et al. Application of dimensionality reduction in recommender system-a case study. No. TR-00-043. Minnesota Univ Minneapolis Dept of Computer Science, 2000.
    [65] Baeza-Yates, Ricardo, and Berthier Ribeiro-Neto. Modern information retrieval. Vol. 463. New York: ACM press, 1999.
    [66] Mooney, Raymond J., and Loriene Roy. "Content-based book recommending using learning for text categorization." Proceedings of the fifth ACM conference on Digital libraries. ACM, 2000.
    [67] Li, Jia, and Osmar R. Za#westeur048#ane. "Combining usage, content, and structure data to improve web site recommendation." E-Commerce and Web Technologies. Springer Berlin Heidelberg, 2004: 305-315.
    [68] Adomavicius, Gediminas, and Alexander Tuzhilin. "Multidimensional recommender systems: a data warehousing approach." Electronic commerce. Springer Berlin Heidelberg, 2001:180-192.
    [69] Adomavicius, Gediminas, et al. "Incorporating contextual information in recommender systems using a multidimensional approach." ACM Transactions on Information Systems (TOIS) 23.1, 2005: 103-145.
    [70] Canny, John. "Collaborative filtering with privacy." Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium on. IEEE, 2002.
    [71] Polat, Huseyin, and Wenliang Du. "Privacy-preserving collaborative filtering using randomized perturbation techniques.", 2003.
    [72] O'Donovan, John, and Barry Smyth. "Trust in recommender systems." Proceedings of the 10th international conference on Intelligent user interfaces. ACM, 2005.
    [73] Chirita, Paul-Alexandru, Wolfgang Nejdl, and Cristian Zamfir. "Preventing shilling attacks in online recommender systems." Proceedings of the 7th annual ACM international workshop on Web information and data management. ACM, 2005.
    [74] Zhang, Sheng, et al. "Attack detection in time series for recommender systems." Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2006.
    [75] Caglayan, Alper, et al. "Learn sesame a learning agent engine." Applied Artificial Intelligence 11.5, 1997: 393-412.
    [76] Claypool, Mark, et al. "Implicit interest indicators." Proceedings of the 6th international conference on Intelligent user interfaces. ACM, 2001.
    [77] Oard, Douglas W., and Jinmook Kim. "Implicit feedback for recommender systems." Proceedings of the AAAI workshop on recommender systems. Wollongong, 1998.
    [78] Morita, Masahiro, and Yoichi Shinoda. "Information filtering based on user behavior analysis and best match text retrieval." Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval. Springer-Verlag New York, Inc., 1994.
    [79]https://www.sandvine.com/pr/2014/11/20/sandvine-report-netflix-dominates-still-amazon-instant-video-growing.html
    [80]http://www.businessinsider.com/netflix-ceo-broadcast-tv-dead-in-16-years-2014-11
    [81]http://www.nytimes.com/2013/02/25/business/media/for-house-of-cards-using-big-data-to-guarantee-its-popularity.html
    [82] http://news.networkmagazine.com.tw/magazine/2012/07/04/40683/
    [83] http://www.nasdaq.com/symbol/nflx/financials?query=income-statement
    [84] http://news.cnyes.com/Content/20130321/KH6QG9IYITIY7.shtml
    [85] https://gigaom.com/2012/01/26/why-the-era-of-big-data-is-just-beginning/
    [86] Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth. "The KDD process for extracting useful knowledge from volumes of data." Communications of the ACM 39.11, 1996: 27-34.

    無法下載圖示 本全文未授權公開
    QR CODE