研究生: |
孫御哲 Sun, Yu-Che |
---|---|
論文名稱: |
2-氯-4-氟苯甲醚之質量解析臨界游離光譜研究 2-Chloro-4-fluoroanisole studied by mass-analyzed threshold ionization spectroscopy |
指導教授: |
曾文碧
Tzeng, Wen-Bih 林震煌 Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 2-氯-4-氟苯甲醚 、共振增強多光子游離光譜 、第一電子激發態振動光譜 、質量解析臨界游離光譜 |
英文關鍵詞: | 2-chloro-4-fluoroanisole, resonance-enhanced multiphoton ionization, vibronic, mass-analyzed threshold ionization |
DOI URL: | https://doi.org/10.6345/NTNU202203083 |
論文種類: | 學術論文 |
相關次數: | 點閱:124 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗應用單色共振雙光子游離(1C-R2PI)光譜術、雙色共振雙光子游離(2C-R2PI)光譜術以及質量解析臨界游離(MATI)光譜術來探討2-氯-4-氟苯甲醚的分子特性,利用以上技術精準量測分子於基態躍遷至第一電子激發態的能量、絕熱游離能及其第一電子激發態暨離子態的振動光譜。
利用單色共振雙光子游離術與質量解析臨界游離光譜術,測得2-氯-4-氟苯甲醚和其同位素異構物(37Cl)有相同的第一電子躍遷能和絕熱游離能,分別為34621 ± 2 cm-1及67204 ± 5 cm-1,藉由第一電子激發態振動光譜的資訊,以不同中間態S100、S1X1、S1151、S16b1紀錄離子態振動光譜,依據實驗結果搭配理論計算,顯示大部分振動模式和苯環平面運動及取代基運動有關。
將2-氯-4-氟苯甲醚與實驗室之前所測量過的2-氯苯甲醚、4-氟苯甲醚、苯甲醚以及2,4-雙氟苯甲醚的實驗數據做比較,讓我們更加了解氯和氟在苯甲醚上的取代基效應,以及對分子結構、躍遷能量的影響。利用理論計算的結果來解釋我們所觀察到的現象,並幫助我們完成分子光譜的標定。
In this work we applied the resonant two-photon ionization and mass-analyzed threshold ionization techniques to investigate the molecular properties of 2-chloro-4-fluoroanisole. These techniques are used to record the vibronic and cation spectra which also determine the excitation energy and adiabatic ionization energy.
The excitation energy of the S1←S0 transition (E1) and the adiabatic ionization energy (IE) of 2-chloro-4-fluoroanisole are found to be 34621 ± 2 cm-1 and 67204 ± 5 cm-1, respectively. Between 35Cl and 37Cl isotopomers for 2-chloro-4-fluoroanisole has the same excitation and ionization energies within present detection limit in our experiment. The cation spectra were obtained by ionizing via the 00, X1, 151, and 6b1 levels of the electronically excited S1 state. According to experimental results with theoretical calculations, the most of active vibrations of this molecule in S1 and D0 states are related to in-plane aromatic ring and substituent-active vibrations.
Comparing the data of 2-chloro-4-fluoroanisole with those of o-chloroanisole, p-fluoroanisole, anisole, and 2,4-difluoroanisole, we can learn more about the substitution effects on the transition energy and molecular geometry. By using theoretical calculation results can explain phenomena that we observe in the experiment, and help us to assign the peaks from molecular spectra.
[1] T. H. Maiman, Nature 187 (1960) 493.
(Stimulated optical radiation in ruby)
[2] T. H. Maiman, Phys. Today 20 (1967) 24.
(Laser applications)
[3] S.V. Rahavendran, H.T. Karnes, Anal. Chem. 68 (1996) 3763.
(Application of rhodamine 800 for reversed phase liquid
chromatographic detection using visible diode laser-Induced
fluorescence)
[4] A. Nakajima, M. Hirano, R. Hasumi, K. Kaya, H. Watanabe, C.C. Carter, J.M. Williamson, T.A. Miller, J. Phys. Chem. A 101 (1997) 392.
(High-Resolution Laser-Induced Fluorescence Spectra of 7-Azaindole−Water Complexes and 7-Azaindole Dimer)
[5] H. Wang, J. Xing, W. Tan, M. Lam, T. Carnelley, M. Weinfeld, X.C. Le, Anal. Chem. 74 (2002) 3714.
(Binding stoichiometry of DNA adducts with antibody studied by
capillary electrophoresis and laser-induced fluorescence)
[6] P.B. McKibbin, K. Otsuka, S. Terabe, Anal. Chem. 74 (2002) 3736.
(On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection)
[7] M. Takayanagi, D. Negishi, Y. Skurai, J. Phys. Chem. A 106 (2002) 7690.
(Torsional potential of methyl group in m-tolunitrile-H2O and
m-tolunitrile-N2O complexes studied by laser-induced
fluorescence and hole-burning spectroscopies)
[8] B.C. Giordano, L. Jin, A.J. Couch, J.P. Ferance, J.P. Landers, Anal. Chem. 76 (2004) 4705.
(Microchip laser-induced fluorescence detection of proteins at
submicrogram per milliliter levels mediated by dynamic labeling
under pseudonative conditions)
[9] T.G. Dietz, M.A. Duncan, M.G. Liveman, R.E. Smalley, J. Chem. Phys. 73 (1980) 4816.
(Resonance enhanced two‐photon ionization studies in a supersonic
molecular beam: Bromobenzene and iodobenzene)
[10] W. C. Wiley, I. H. McLaren, Rev. Sci. Instrum. 26 (1955) 1150.
(Time-of-Flight Mass Spectrometer with Improved Resolution)
[11] C. R. C. Wang, C. C. Hsu, W. Y. Liu, W. C. Tsai, W. B. Tzeng, Rev. Sci. Instrum. 65 (1994) 2776.
(Determination of laser beam waist using photoionization time-of-flight mass spectrometer)
[12] K. Watanabe, J. Chem. Phys. 22 (1954) 1564.
(Photoionization and total absorption cross section of gases. I.
ionization potentials of several molecules. cross sections of NH3
[13] C. Nordling, E. Sokolowski, K. Siegbahn , Phys. Rev. 105 (1957) 1676.
(Precision Method for Obtaining Absolute Values of Atomic Binding
Energies)
[14] S. Hagstrom, C. Nordling, K. Siegbahn, Phys. Lett. 9 (1964) 235.
(Electron spectroscopy for chemical analysis)
[15] D. W. Turner, M. I. Al-Joboury, J. Chem. Phys. 37 (1962) 3007.
(Determination of Ionization Potentials by Photoelectron Energy
Measurement)
[16] M. I. Al-Joboury, D. W. Turner, J. Chem. Soc. 985 (1963) 5141.
(Molecular photoelectron spectroscopy. Part I. The hydrogen and nitrogen molecules)
[17] M. C. R. Cockett, M. Takahashi, K. Okuyama, K. Kimura, Chem. Phys. Lett. 187 (1991) 250.
(REMPI threshold photoelectron spectra of the cis and trans rotational isomers of jet-cooled m-chlorophenol)
[18] G. C. King, A. J. Yencha, M. C. A. Lopes, J. Electron Spectrosc. Relat. Phenom. 114 (2001) 33.
(Threshold photoelectron spectroscopy using synchrotron radiation)
[19] D.Villarejo, R. R. Herm, M. G. Inghram, J. Chem. Phys. 46 (1967) 4995.
(Measurement of threshold electrons in the photoionization of Ar, Kr, and X)
[20] K. Muller-Dethlefs, M. Sander, E. W. Schlag, Chem. Phys. Lett. 112 (1984) 291.
(Two-colour photoionization resonance spectroscopy of NO: Complete separation of rotational levels of NO+ at the ionization threshold)
[21] L. A. Chewter, M. Sander, K. Muller-Dethlefs, E. W. Schlag, J. Chem. Phys. 86 (1987) 4737.
(High resolution zero kinetic energy photoelectron spectroscopy of benzene and determination of the ionization potential)
[22] E. W. Schlag, Cambridge University Press, Cambridge, (1998).
(ZEKE Spectroscopy)
[23] L. Zhu, P. M. Johnson, J. Chem. Phys. 94 (1991) 5769.
(Mass analyzed threshold ionization spectroscopy)
[24] H. Dickinson, T. Chelmick, T. P. Softley, Chem. Phys. Lett. 338 (2001) 37.
((2+1') mass analyzed threshold ionization (MATI) spectroscopy of the CD3 radical)
[25] K. W. Choi, S. K. Kim, D. S. Ahn, S. Lee, J. Phys. Chem. A 108 (2004) 11292.
(One-photon mass-analyzed threshold ionization spectroscopy of bis (η6-benzene)chromium and its benzene and Ar clusters)
[26] L. Wu, C. H. Zhang, S. A. Krasnokutski, D. S. Yang, J. Chem. Phys. 137 (2012) 084312.
(Mass-analyzed threshold ionization and structural isomers of M3O4 (M = Sc, Y, and La))
[27] J. Braun, H. J. Neusser, P. Hobza, J. Phys. Chem. A 107 (2003) 3918.
(N-H center dot center dot center dot pi interactions in indole center dot center dot center dot benzene-h(6),d(6) and indole center dot center dot center dot benzene-h(6),d(6) radical cation complexes. Mass analyzed threshold ionization experiments and correlated ab initio quantum chemical calculations)
[28] S. Kumari, W. J. Cao, D. Hewage, R. Silva, D. S. Yang, J. Chem. Phys. 146 (2017) 074305.
(Mass-analyzed threshold ionization spectroscopy of lanthanum-hydrocarbon radicals formed by C—H bond activation of propene)
[29] C. Lauzin, U. Jacovella, F. Merkt, Mol. Phys. 113 (2015) 3918
(Threshold ionization spectroscopy of H2O, HDO and D2O and low-lying vibrational levels of HDO+ and D2O+)
[30] M. Miyazaki, S. Yoshikawa, F. Michels, K. Misawa, S. Ishiuchi, M. Sakai, O. Dopfer, K. Muller-Dethlefs, M. Fujii, Phys. Chem. Chem. Phys. 17 (2015) 2494.
(Mass analyzed threshold ionization detected infrared spectroscopy: isomerization activity of the phenol-Ar cluster near the ionization threshold)
[31] J. E. Braun, Th. Mehnert, H.J. Neusser, Inter. J. Mass Spect. 203 (2000) 1.
(Binding energy of van der Waals- and hydrogen-bonded clusters by threshold ionization techniques)
[32] R. Karaminkov, S. Chervenkov, H.J. Neusser, J. Phys. Chem. A 114 (2010) 11263.
(Mass-analyed threshold ionization spectroscopy of ortho fluorinated 2-phenylethanol: identification of an additional gauche conformer)
[33] S. T. Park, S. K. Kim, M. S. Kim, J. Chem. Phys. 115 (2001) 2492.
(Vacuum-ultraviolet mass-analyzed threshold ionization spectra of iodobutane isomers: Conformer-specific ionization and ion-core dissociation followed by ionization)
[34] C. Y. Li, J. L. Lin, W. B. Tzeng, J. Chem. Phys. 122 (2005) 044311.
(Mass-analyzed threshold ionization spectroscopy of the rotamers of p-n-propylphenol cation and configuration effect)
[35] J. G. Huang, J. L. Lin, W. B. Tzeng, Spectrochim. Acta A 67 (2007) 989.
(Rotamers of m-cresol cations studied by mass analyzed threshold ionization spectroscopy)
[36] J. L. Lin, C. J. Huang, C. H. Lin, W. B. Tzeng, J. Mol. Spectrosc. 244 (2007) 1.
(Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline)
[37] M. Lee, M. S. Kim, J. Phys. Chem. A 107 (2003) 11401.
(One-Photon Mass-Analyzed Threshold Ionization Spectroscopy of trans- and cis-1-C3H5Br: Ionization Energies and Vibrational Assignments for the Cations)
[38] Q. S. Zheng, T. I. Fang, B. Zhang, W. B. Tzeng, Chin. J. Chem. Phys. 22 (2009) 649.
(Mass analyzed threshold ionization spectroscopy of Rotamers of p-ethoxyphenol)
[39] S. C. Yang, S. W. Huang, W. B. Tzeng, J. Phys. Chem. A. 114 (2010) 11144.
(Rotamers of o- and m-dimethoxybenzenes studied by mass-analyzed threshold ionization spectroscopy and theoretical calculations)
[40] C. C. Qin, S. Y. Tzeng, B. Zhang, W. B. Tzeng, Chem. Phys. Lett. 503 (2011) 25.
(Selected cis- and trans-p-methoxystyrene rotamers studied by mass-analyzed threshold ionization spectroscopy)
[41] W. C. Huang, W. B. Tzeng, Trends in Appl. Spectrosc. 9 (2013) 75.
(Rotamers of aromatic molecules studied by two-color resonant two photon ionization and mass-analyzed threshold ionization spectroscopy)
[42] C. Y. Tsai, W. B. Tzeng, J. Photochem. and Photobio. A 270 (2013) 53.
(Rotamers of 3,4-difluorophenol studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[43] V. Shivatare, W. B. Tzeng, Mol. Phys. 112 (2014) 2397.
(Vibronic and cation spectroscopy of selected rotamers of 4-chloro-3-fluorophenol)
[44] Y. Xu, S. Y. Tzeng, V. Shivatare, K. Takahashi, B. Zhang, and W. B. Tzeng, Spectrochim. J. Chem. Phys. 142 (2015) 124314.
(Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy)
[45] P. Y. Wu, W. B. Tzeng, J. Mol. Spectrosc. 316 (2015) 72.
(Selected cis- and trans-3-fluorostyrene rotamers studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[46] P. Y. Wu, S. Y. Tzeng, C. Y. Tsai, W. B. Tzeng, Acta. Phys. Chim. Sin. 32 (2016) 893.
(Rotamers of 2,5-difluorophenol studied using mass-analyzed threshold ionization spectroscopy)
[47] S. Liu, L. J. Tzeng, W. S. Dai, M. Cheng, Y. K. Du, Q. H. Zhu, J. Mol. Spectrosc. 336 (2017) 12.
(REMPI and MATI spectroscopy of cis and trans 3-chloro-N-methylaniline)
[48] S. Ketkov, N. Isachenkov, E. Rychagova, W. B. Tzeng, Dalton Trans. 43 (2014) 17703.
(Electronic excited states of chromium and vanadium bisarene complexes revisited: interpretation of the absorption spectra on the basis of TD-DFT calculations)
[49] S. Y. Ketkov, G. V. Markin, S. Y. Tzeng, W. B. Tzeng, Chem. Eur. J. 22 (2016) 4690.
(Fine substituent effects in sandwich complexes: first threshold
ionization study of monosubstituted chromium bisarene compounds)
[50] G. S. Hiers, F. D. Hager, Org. Synth. 1 (1941) 55.
(Anisole)
[51] M. Pradhan, C. Y. Li, J. L. Lin, W. B. Tzeng, Chem. Phys. Lett. 407 (2005) 100.
(Mass analyzed threshold ionization spectroscopy of anisole cation and the OCH3 substitution effect)
[52] H. C. Huang, B. Y. Jin, W. B. Tzeng, J. Photochem. Photobio. A 243 (2012) 73.
(Two-color resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of o-chloroanisole)
and the OCH3 substitution effect)
[53] H. C. Huang, K. S. Shiung, B. Y. Jin, W. B. Tzeng, Chem. Phys. 425 (2013) 114.
(Rotamers of m-chloroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[54] K. S. Shiung, D. Yu, S. Y. Tzeng, W. B. Tzeng, Chem. Phys. Lett. 524 (2012) 38.
(Cation spectroscopy of o-fluoroanisole and p-fluoroanisole by two-color resonant two-photon mass-analyzed threshold ionization)
[55] K. S. Shiung, D. Yu, H. C. Huang, W. B. Tzeng, J. Mol. Spectrosc. 274 (2012) 43.
(Rotamers of m-fluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[56] Y. Xu, S. Y. Tzeng, B. Zhang, W. B. Tzeng, Spectrochim. Acta A 102 (2013) 365.
(Rotamers of 3,4-difluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[57] J. G. Huang, C. Y. Li, W. B. Tzeng, Chem. Phys. Lett. 414 (2005) 276.
(Mass analyzed threshold ionization spectroscopy of p-methylanisole cation and the substitution effect)
[58] C. Qin, S. Y. Tzeng, B. Zhang, W. B. Tzeng, Acta. Phys. Chim. Sin. 30 (2014) 1416.
(Rotamers of m-methylanisole studied by mass-analyzed threshold ionization spectroscopy)
[59] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 113 (2000) 4109.
(Mass analyzed threshold ionization of the 35Cl and 37Cl isotopomers of p-chloroaniline)
[60] J. L. Lin, W. B. Tzeng, J. Chem. Phys. 115 (2001) 743.
(Mass analyzed threshold ionization of deuterium substituted isotopomers of aniline and p-fluoroaniline: Isotope effect and site-specific electronic transition)
[61] J. L. Lin, S. C. Yang, Y. C. Yu, W. B. Tzeng, Chem. Phys. Lett. 356 (2002) 267.
(Mass analyzed threshold ionization of p-bromoaniline: Heavy atom effects on electronic transition, ionization, and molecular vibration)
[62] J.L. Lin, K.C. Lin, W. B. Tzeng, J. Phys. Chem. A 106 (2002) 6462.
(Mass analyzed threshold ionization spectroscopy of o-, m-, p-methylaniline cations: Vicinal substitution effects on electronic transition, ionization, and molecular vibration)
[63] S. C. Yang, J. L. Lin, W. B. Tzeng, Chem. Phys. Lett. 362 (2002) 19.
(Mass analyzed threshold ionization spectroscopy of p-ethylaniline cation: Alkyl chain effects on ionization and molecular vibration)
[64] J. L. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 370 (2003) 44.
(Mass analyzed threshold ionization spectroscopy of p-methoxylaniline cation and influence of the OCH3 substituent)
[65] J. L. Lin, J. L. Lin, W. B. Tzeng, Chem. Phys. 295 (2003) 97.
(Mass analyzed threshold ionization spectroscopy of N-methylaniline and N-ethylaniline cations: Isotope effect on transition energy and large amplitude vibrations)
[66] J. L. Lin, C. J. Huang, C. H. Lin, W. B. Tzeng, J. Mol. Spectrosc. 244 (2007) 1.
(Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline)
[67] W.C. Huang, W.B. Tzeng, J. Mol. Spectrosc. 266 (2011) 52.
(Cation spectroscopy of 3,4-difluoroaniline by two-color resonant two-photon mass-analyzed threshold ionization)
[68] W. C. Huang, W. L. Yeh, W. B. Tzeng, J. Mol. Spectrosc. 269 (2011). 248
(Vibronic and cation spectroscopy of m-chloroaniline)
[69] W. C. Huang, P. S. Huang, C. H. Hu, W. B. Tzeng, Spectrochim. Acta A 93 (2012) 176.
(Vibronic and cation spectroscopy of 2,4-difluoroaniline)
[70] Y. J. Su, W. B. Tzeng, Tzeng, Chem. Phys. Lett. 543 (2012) 19.
(Vibronic and cation spectroscopy of p-ethynylaniline)
[71] S. Y. Tzeng, C. W. Dong, W. B. Tzeng, Chem. Phys. 407 (2012) 71.
(Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of p-vinylaniline)
[72] K. W. Lo, W. B. Tzeng, J. Mol. Spectrosc. 288 (2013) 1.
(3-Chloro-4-fluoroaniline studied by resonant two-photo ionization and mass-analyzed threshold ionization spectroscopy)
[73] W. C. Huang, P. S. Huang, C. H. Hu, W. B. Tzeng, Chem. Phys. Lett. 580 (2013) 28.
(Resonant two-photon mass-analyzed threshold ionization of 2,5-difluoroaniline)
[74] Y. H. Huang, W. C. Huang, W. B. Tzeng, Chem. Phys. Lett. 595 (2014) 73.
(4-Chloro-3-fluoroaniline studied by resonant two-photo ionization and mass-analyzed threshold ionization spectroscopy)
[75] P. Y. Wu, H. H. Huang, K. C. Lin, W. B. Tzeng, Chem. Phys. Lett. 682 (2017) 34.
(Two-color resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of 4-chlorostyrene)
[76] P. Y. Wu, S. Y. Tzeng, Y. C. Hsu, W. B. Tzeng, J. Mol. Spectrosc. 332 (2017) 3.
(Ionization energy and active cation vibrations of trans-2-fluorostyrene)
[77] C. H. Kwon, H. L. Kim, M. S. Kim, J. Phys. Chem. A 107 (2003) 10969.
(Vibrational analysis of vacuum ultraviolet mass-analyzed threshold ionization spectra of phenylacetylene and benzonitrile)
[78] D. Yu, C. W. Dong, M. Cheng, L. L. Hu, Y. K. Du, Q. H. Zhu, C. H. Zhang, J. Mol. Spectrosc. 265 (2011) 86.
(Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of the 35Cl and 37Cl isotopomers of p-chloroanisole)
[79] D. Yu, C. W. Dong, L. J. Zhang, M. Cheng, L. L. Hu, Y. K. Du, Q. H. Zhu, C. H. Zhang, J. Mol. Struct. 1000 (2011) 92.
(Resonant two-photon ionization spectroscopy of the 35Cl and 37Cl isotopomers of cis and trans 3-chloro-4-fluoroanisole)
[80] L.J. Zhang, D. Yu, C.W. Dong, M. Cheng, L. L. Hu, Z. M. Zhou, Y. K. Du, Q. H. Zhu, C. H. Zhang, Spectrochim. Acta A 104 (2013) 235.
(Rotamers and isotopomers of 3-chloro-5-fluoroanisole studied by resonant two-photon ionization spectroscopy and theoretical calculations)
[81] S. C. Yang, W. B. Tzeng, J. Mol. Spectrosc. 269 (2011) 49-55.
(Mass-analyzed threshold ionization spectroscopy of deuterium-substituted isotopomers of o-fluoroaniline and m-fluoroaniline cations)
[82] C. Y. Li, M. Pradhan, W. B. Tzeng, Chem. Phys. Lett. 411 (2005) 506.
(Mass analyzed threshold ionization spectroscopy of p-cyanophenol cation and the CN substitution effect)
[83] J. L. Lin, Y. C. Li, W. B. Tzeng, Chem. Phys. 334 (2007) 189.
(Mass analyzed threshold ionization spectroscopy of aza-aromatic bicyclic molecules: Benzimidazole and benzotriazole)
[84] S. Y. Tzeng, J. Y. Wu, S. D. Zhang, W.B. Tzeng, J. Mol. Spectrosc. 281 (2012) 40.
(Resonant two-photon mass-analyzed threshold ionization spectroscopy of 1-fluoronaphthalene and 2-fluoronaphthalene)
[85] V. Shivatarea, S. Y. Tzeng, W. B. Tzeng, Chem. Phys. Lett. 558 (2013) 20.
(Active vibrations of 1-cyanonaphthalene cation studied by mass-analyzed threshold ionization spectroscopy)
[86] V. Shivatare , W. B. Tzeng, J. Phys. Chem. A 118 (2014) 8277.
(Studies of structural isomers o-, m-, and p-fluorophenylacetylene by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy
[87] W. A. Chupka, J. Chem. Phys. 98 (1993) 4520.
(Factors affecting lifetimes and resolution of Rydberg states observed in zero‐electron‐kinetic‐energy spectroscopy)
[88] U. Fano, Phys. Rev. A 2 (1970) 353.
(Quantum defect theory of l uncoupling in H2 as an example of channel-interaction treatment)
[89] F. Merkt, Annu. Rev. Phys. Chem. 48 (1997) 675.
(molecules in high Rydberg states)
[90] H. Dickinson, D. Rolland, T. P. Softley, J. Phys. Chem. A 105 (2001) 5590.
(Multichannel quantum defect theory (MQDT) analysis of the (2+1') mass analyzed thresholdionization (MATI) spectroscopy of NH3)
[91] M.J. Seaton, MNRAS 118 (1958) 504.
(The quantum defect method)
[92] J. D. Hofstein, J. G. Goode, P. M. Johnson, Chem. Phys. Lett. 301 (1999) 121.
(A comparative investigation of Rydberg-state survival in several molecules using mass-analyzed threshold ionization)
[93] F. B. Dunning, R. F. Stebbings, Rydberg states of atoms and molecules, Cambridge University Press, Cambridge, 1983
[94] W.A. Chupka, J. Chem. Phys. 99 (1993) 5800.
(Lifetimes of very high Rydberg states of aromatic molecules)
[95] S. H. Autler, C. H. Townes, Phys. Rev. 100 (1955) 703.
(Stark Effect in Rapidly Varying Fields)
[96] H. Ikoma, K. Takazawa, Y. Emura, S. Ikeda, H. Abe, H. Hayashi, M. Fujii, J. Chem. Phys. 105 (1996) 10201.
(Internal rotation of methyl group in o- and m-toluidine cations as studied by pulsed field ionization-zero kinetic energy spectroscopy)
[97] J. H. Moore, C. C. Davis, M. A. Coplan, S. C. Greer, Building scientific appaeatus, University of Maryland, College Park, 2002
[98] User’s manual (Spectra-Physics LAB-150), Spectra-Physics,1335 terra bella avenue mountain View, 2003
[99] User’s manual (Lambda Physik Scanmate), Lambda Physik USA, 3201 West Commerical Blvd, 2005
[100] Exciton Laser Dyes 30 Years of Excellence and More Brilliant Than Ever, Excition, INC, 1992
[101] U. Brackmann, Lambdachrome Laser Dyes 2nd revised edition, Lambda Physik GmbH, 1997
[102] Gaussian 09, Revision A.02,, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[103] James B. Foresman, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., 2nd Ed, 1996.
[104] R. McWeeny, G. Dierksen, J. Chem. Phys. 49 (1968) 4852.
(Self‐Consistent Perturbation Theory. II. Extension to Open Shells)
[105] A. D. Becke, J.Chem. Phys. 97 (1992) 9173
(Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction)
[106] P. M. W. Gill, B. G. Johnson, J. A. Pople, M. J. Frisch, Chem. Phys. Lett.197 (1992) 499.
(The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets)
[107] G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 89 (1988) 2193.
(A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements)
[108] G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 94 (1991) 6081.
(A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first-row atoms)
[109] M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys.108 (1998) 4439.
(Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold)
[110] S.F. Boys, Proc. R. Soc. London, A 200 (1950) 542.
(Electronic wavefunctions. I. A general method of calculation for
stationary states of any molecular system)
[111] E. B. Wilson, Phys. Rev. 45 (1934) 427.
(Calculation of vibrational isotope effect in polyatomic molecules by a perturbation method)
[112] G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley, New York, 1974.