研究生: |
李依涵 I-Han Lee |
---|---|
論文名稱: |
探討Kryptolebias marmoratus敗者效應之荷爾蒙機制 The hormonal mechanisms of the loser effect in Kryptolebias marmoratus |
指導教授: |
許鈺鸚
Hsu, Yu-Ying |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 打鬥 、敗者效應 、類固醇荷爾蒙 、皮質醇 、睪固酮 、魚 、Kryptolebias marmoratus |
英文關鍵詞: | contest behaviors, loser effect, steroid hormones, cortisol, testosterone, fish, Kryptolebias marmoratus |
論文種類: | 學術論文 |
相關次數: | 點閱:205 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
個體在打鬥中落敗後,再度遇到競爭對手時往往會表現得較被動,若是進行打鬥則較易認輸,此現象稱為敗者效應(loser effect),但敗者效應之生理機制至今仍不清楚。許多類固醇荷爾蒙被指出與打鬥行為相關,在一些魚類的研究中發現,相較於獲勝者,落敗者的糖皮質素(glucocorticoids)分泌量顯著較高;雄性素(androgen)分泌量則顯著較低。另外,外加糖皮質素以及抑制雄性素的分泌會降低個體的攻擊性。由這些研究可知,血液中糖皮質素以及雄性素濃度與攻擊行為之間存在著複雜的交互關係。然而,大部分的研究只專注在荷爾蒙狀態是否能預測個體的打鬥行為,以及在打鬥中落敗後個體的荷爾蒙狀態如何變化,卻沒有在個體落敗之後繼續監控其隨後的打鬥行為,以探討個體落敗後荷爾蒙反應與打鬥行為之間的關聯性。因此,這些研究的結果無法確定落敗經驗之行為效應是否由類固醇荷爾蒙居中調控。
本研究以Kryptolebias marmoratus為實驗物種,探討落敗者打鬥行為改變之荷爾蒙機制:強制給予個體三次輸的經驗後,觀察其體內皮質醇和睪固酮分泌量的變化,並探討這些內分泌變化是否可以解釋此個體的行為改變。此外,本研究也更進一步探討輸經驗是否會影響個體再打鬥時體內之內分泌變化。結果顯示,輸的經驗會降低K. marmoratus個體在之後打鬥中參與激烈打鬥的機率、打鬥時間以及獲勝的機率。然而,輸的經驗卻不會改變個體的皮質醇或睪固酮分泌量。這些結果顯示皮質醇和睪固酮並非調控敗者效應的主要生理機制。實驗結果也發現獲得輸經驗的個體,其經驗後睪固酮分泌量越高,打鬥時發生激烈打鬥機率越大。經驗給予後的打鬥勝負則顯著地影響了打鬥後皮質醇分泌量:落敗者打鬥後皮質醇分泌量顯著低於獲勝者。另外,打鬥勝負決定後,獲勝者攻擊對手的次數以及落敗者被攻擊的次數與其打鬥後皮質醇濃度呈現顯著的正相關。顯示皮質醇和睪固酮與打鬥行為有顯著的相關性,但是這些相關性無法解釋敗者效應。論文最後亦針對敗者效應的可能生理機制進行討論。
A recent losing experience often causes an individual to behave submissively and to have a higher chance of losing again in a subsequent contest (loser effect). The physiological mechanisms underlying the loser effect are currently unknown. In fish, losers often exhibit higher cortisol and/or lower testosterone levels than winners. Furthermore, experimentally, either elevating cortisol or reducing testosterone levels often decreases individuals’ aggressiveness. These results suggest that cortisol and testosterone could play important roles in mediating the loser effect. Although these hormones have been shown to be associated with social status or aggressiveness, however, most studies focusing on physiological mechanisms have not monitored post-contest behavioral changes. Consequently, observed changes in the neuroendocrine systems after losses can not be mapped on to subsequent changes in contest behavior to understand the parallel physiological and behavioral mechanisms of the experience effects fully.
In this study, I gave individuals of Kryptolebias marmoratus three losing experiences to investigate the relationship between changes in behavior and levels of cortisol and testosterone. I also examined how interactions in post–experience contests might further influence an individual’s cortisol and testosterone levels.
Losing experiences significantly decreased an individual’s persistence in a subsequent contest as well as its likelihood of escalating or winning the contest. However, losing experiences did not have a significant effect on cortisol or testosterone levels. These results indicate that cortisol and testosterone are not the main physiological modulators of the loser effect in this species. However, cortisol and testosterone were found to correlate with several contest behaviors: in individuals with losing experiences, higher post-experience testosterone was associated with an increased tendency to escalate. Additionally, losers had higher post-contest cortisol levels than winners, which indicated that contest outcome influenced post-contest cortisol levels. Furthermore, both winners and losers' post-contest cortisol levels were positively correlated with the frequency of post-contest attacks. In conclusion, the results of the present study suggest that, although cortisol and testosterone are correlated with contest behavior and outcome, they are not the main physiological modulators of the loser effect. Possible physiological mechanisms of the loser effect in the fish were discussed.
Abel T. and Kandel E., 1998. Positive and negative regulatory mechanisms that mediate long-term memory storage. Brain Research Reviews 26:360-378.
Archer J., 1987. The Behavioral Biology of Aggression. Cambridge: Cambridge University Press.
Arnott G. and Elwood R. W., 2007. Fighting for shells: how private information about resource value changes hermit crab pre–fight displays and escalated fight behaviour. Proceedings of the Royal Society B: Biological Sciences 274:3011–3017.
Arnott G. and Elwood R. W., 2008. Information gathering and decision making about resource value in animal contests. Animal Behaviour 76:529–542.
Arnott G. and Elwood R. W., 2009. Assessment of fighting ability in animal contests. Animal Behaviour 77:991–1004.
Bégin J., Beaugrand J. P. and Zayan R., 1996. Selecting dominants and subordinates at conflict outcome can confound the effects of prior dominance or subordination experience. Behavioural Processes 36:219–226.
Beacham J. L. and Newman J. A., 1987. Social experience and the formation of dominance relationships in the pumpkinseed sunfish, Lepomis gibbosus. Animal Behaviour 35:1560–1563.
Blanchard D. C., Sakai R. R., McEwen B., Weiss S. M. and Blanchard R. J., 1993. Subordination stress: behavioral, brain, and neuroendocrine correlates. Behavioural Brain Research 58:113–121.
Blanchard R. J., McKittrick C. R. and Blanchard D. C., 2001. Animal models of social stress: effects on behavior and brain neurochemical systems. Physiology and Behavior 73:261–271.
Borg B., 1994. Androgens in teleost fishes. Comparative Biochemistry and Physiology – Part C: Toxicology and Pharmacology 109:219–245.
Brick O., 1999. A test of the sequential assessment game: the effect of increased cost of sampling. Behavioral Ecology 10:726–732.
Bridge A. P., Elwood R. W. and Dick J. T. A., 2000. Imperfect assessment and limited information preclude optimal strategies in male–male fights in the orb–weaving spider Metellina mengei. Proceedings of the Royal Society of London Series B: Biological Sciences 267:273–279.
Cardwell J. R. and Liley N. R., 1991. Androgen control of social status in males of a wild population of stoplight parrotfish, Sparisoma viride (Scaridae). Hormones and Behavior 25:1–18.
Carpenter R. E. and Summers C. H., 2009. Learning strategies during fear conditioning. Neurobiology of Learning and Memory 91:415–423.
Chapman M. R. and Kramer D. L., 1996. Guarded resources: the effect of intruder number on the tactics and success of defenders and intruders. Animal Behaviour 52:83–94.
Chase I. D., Bartolomeo C. and Dugatkin L. A., 1994. Aggressive interactions and inter–contest interval: how long do winners keep winning? Animal Behaviour 48:393-400.
Chen M.–H., 2008. Do different prior experiences interference with each other? Master's thesis. Taipei, Taiwan: National Taiwan Normal University.
Chichinadze K. and Chichinadze N., 2008. Stress–induced increase of testosterone: contributions of social status and sympathetic reactivity. Physiology and Behavior 94:595–603.
Costa W. J. E. M., 2004. Kryptolebias, a substitute name for Cryptolebias Costa, 2004 and Kryptolebiatinae, a substitute name for Cryptolebiatinae Costa, 2004 (Cyprinodontiformes: Rivulidae). Neotropical lchthyology 2:107–108.
Creel S., 2001., Social dominance and stress hormones. Trends in Ecology & Evolution 16:491-497.
Creel S., MarushaCreel N. and Monfort S. L., 1996. Social stress and dominance. Nature 379:212–212.
Davis M., 1992. The role of the amygdala in fear and anxiety. Annual Review of Neuroscience 15:353–375.
DeNardo D. F. and Licht P., 1993. Effects of corticosterone on social behavior of male lizards. Hormones and Behavior 27:184–199.
Desjardins J. K., Hazelden M. R., Van der Kraak G. J. and Balshine S., 2006. Male and female cooperatively breeding fish provide support for the "Challenge Hypothesis". Behavioral Ecology 17:149–154.
DiBattista J. D., Anisman H., Whitehead M. and Gilmour K. M., 2005. The effects of cortisol administration on social status and brain monoaminergic activity in rainbow trout Oncorhynchus mykiss. The Journal of Experimental Biology 208:2707–2718.
Dickinson J. L., 1992. Scramble competition polygyny in the milkweed leaf beetle: combat, mobility, and the importance of being there. Behavioral Ecology 3:32–41.
Draud M. and Lynch P. A. E., 2002. Asymmetric contests for breeding sites between monogamous pairs of convict cichlids (Archocentrus nigrofasciatum, Cichlidae): Pair experience pays. Behaviour 139:861–873.
Earley R. L., Edwards J. T., Aseem O., Felton K., Blumer L. S., Karom M. and Grober M. S., 2006. Social interactions tune aggression and stress responsiveness in a territorial cichlid fish (Archocentrus nigrofasciatus). Physiology and Behavior 88:353–363.
Earley R. L. and Hsu Y., 2008. Reciprocity between endocrine state and contest behavior in the killifish, Kryptolebias marmoratus. Hormones and Behavior 53:442–451.
Eckert C. G. and Weatherhead P. J., 1987. Owners, floaters and competitive asymmetries among territorial red–winged blackbirds. Animal Behaviour 35:1317–1323.
Ellis T., James J. D., Stewart C. and Scott A. P., 2004. A non invasive stress assay based upon measurement of free cortisol released into the water by rainbow trout. Journal of Fish Biology 65:1233–1252.
Elofsson U. O., Mayer I., Damsgard B. and Winberg S., 2000. Intermale competition in sexually mature arctic charr: effects on brain monoamines, endocrine stress responses, sex hormone levels, and behavior. General and Comparative Endocrinology 118:450-460.
Faruzzi A. N., Solomon M. B., Demas G. E. and Huhman K. L., 2005. Gonadal hormones modulate the display of submissive behavior in socially defeated female Syrian hamsters. Hormones and Behavior 47:569–575.
Francis R. C., Jacobson B., Wingfield J. C. and Fernald R. D., 1992. Castration lowers aggression but not social dominance in male Haplochormis burtoni (Cichlidae). Ethology 90:247–255.
Francis R. C., Soma K. and Fernald R. D., 1993. Social regulation of the brain–pituitary–gonadal axis. Proceedings of the National Academy of Sciences of the United States of America 90:7794–7798.
Gao H. B., Tong M. H., Hu Y. Q., Guo Q. S., Ge R. and Hardy M. P., 2002. Glucocorticoid induces apoptosis in rat leydig cells. Endocrinology 143:130–138.
Genuth S. M., 1993. The endocrine system. In: Physiology (Berne RM, Levy MN, eds). St. Louis: Mosby Year Book; 813–1024.
Greenberg N. and Crews D., 1990. Endocrine and behavioral responses to aggression and social dominance in the green anole lizard, Anolis carolinensis. General and Comparative Endocrinology 77:246–255.
Gregory T. R. and Wood C. M., 1999. The effects of chronic plasma cortisol elevation on the feeding behaviour, growth, competitive ability, and swimming performance of juvenile rainbow trout. Physiological and Biochemical Zoology 72:286–295.
Haller J., Barna I. and Baranyi M., 1995. Hormonal and metabolic responses during psychosocial stimulation in aggressive and nonaggressive rats. Psychoneuroendocrinology 20:65–74.
Hammerstein P. and Parker G., 1982. The asymmetric war of attrition. Journal of Theoretical Biology 96:647–682.
Hardy M. P., Gao H. B., Dong Q., Ge R., Wang Q., Chai W. R., Feng X. and Sottas C., 2005. Stress hormone and male reproductive function. Cell and Tissue Research 322:147–153.
Harrington R. W., Jr., 1961. Oviparous hermaphroditic fish with internal self–fertilization. Science 134:1749–1750.
Harrington R. W., Jr., 1963. Twenty–four–hour rhythms of internal self–fertilization and of oviposition by hermaphrodites of Rivulus marmoratus. Physiological Zoology 36:325–341.
Harrington R. W., Jr., 1971. How ecological and genetic factors interact to determine when self–fertilizing hermaphrodites of Rivulus marmoratus change into functional secondary males, with a reappraisal of the modes of intersexuality among fishes. Copeia 3:339–432.
Hay A. C. and Pankhurst N. W., 2005. Effect of paired encounters on plasma androgens and behaviour in males and females of the spiny damselfish Acanthochromis polyacanthus. Marine and Freshwater Behaviour and Physiology 38:127 – 138.
Hayden–Hixson D. M. and Ferris C. F., 1991. Steroid–specific regulation of agonistic responding in the anterior hypothalamus of male hamsters. Physiology & Behavior 50:793-799.
Hirschenhauser K., Taborsky M., Oliveira T., Canario A. V. M. and Oliveira R. F., 2004. A test of the ‘challenge hypothesis’ in cichlid fish: simulated partner and territory intruder experiments. Animal Behaviour 68:741–750.
Hsu Y., Earley R. L. and Wolf L. L., 2006a. Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biological Reviews 81:33–74.
Hsu Y., Earley R. L. and Wolf L. L., 2006b. Modulating aggression through experience. In: Fish Cognition and Behaviour (Brown C, Laland KN, Krause J, eds). Oxford, UK: Blackwell Publishing Ltd; 96-118.
Hsu Y. and Wolf L. L., 1999. The winner and loser effect: integrating multiple experiences. Animal Behaviour 57:903–910.
Hsu Y. and Wolf L. L., 2001. The winner and loser effect: what fighting behaviours are influenced? Animal Behaviour 61:777–786.
Huehner M. K., Schramm M. E. and Hens M. D., 1985. Notes on the behavior and ecology of the killifish Rivulus marmoratus poey 1880 (Cyprinodontidae). Florida Scientist 48:1–7.
Huhman K. L., Moore T. O., Ferris C. F., Mougey E. H. and Meyerhoff J. L., 1991. Acute and repeated exposure to social conflict in male golden hamsters: increases in plasma POMC–peptides and cortisol and decreases in plasma testosterone. Hormones and Behavior 25:206–216.
Huhman K. L., Moore T. O., Mougey E. H. and Meyerhoff J. L., 1992. Hormonal responses to fighting in hamsters: Separation of physical and psychological causes. Physiology and Behavior 51:1083–1086.
Jara M., Carballada R. and Esponda P., 2004. Age–induced apoptosis in the male genital tract of the mouse. Reproduction 127:359–366.
Jenssen T. A., Decourcy K. R. and Congdon J. D., 2005. Assessment in contests of male lizards (Anolis carolinensis): how should smaller males respond when size matters? Animal Behaviour 69:1325–1336.
Kamiya H., Sasaki S., Ikeuchi T., Umemoto Y., Tatsura H., Hayashi Y., Kaneko S. and Kohri K., 2003. Effect of simulated microgravity on testosterone and sperm motility in mice. Journal of Andrology 24:885–890.
Killeen P., 1981. Averaging theory. In: Quantification of Strady–state Operant Behavior (Bradshaw CM, Szabadi E, Lowe CF, eds). Amsterdam: Elsevier/North Holland; 21–34.
Knol B. W., 1991. Stress and the endocrine hypothalamus–pituitary–testis system: a review. Veterinary Quarterly 13:104–114.
Kraut A., Barbiro–Michaely E. and Mayevsky A., 2004. Differential effects of norepinephrine on brain and other less vital organs detected by a multisite multiparametric monitoring system. Medical Science Monitor 10:BR215–220.
Kruk M. R., Halasz J., Meelis W. and Haller J., 2004. Fast positive feedback between the adrenocortical stress response and a brain mechanism involved in aggressive behavior. Behavioral Neuroscience 118:1062–1070.
Larson E. T. and Summers C. H., 2001. Serotonin reverses dominant social status. Behavioural Brain Research 121:95–102.
Leshner A. I., 1983. The hormonal responses to competition and their behavioral significance. In: Hormones and Aggressive Behavior (Svare BB, ed). New York: Plenum; 393–404.
Mackiewicz M., Tatarenkov A., Turner B. J. and Avise J. C., 2006. A mixed–mating strategy in a hermaphroditic vertebrate. Proceedings of the Royal Society B: Biological Sciences 273:2449–2452.
Marini F., Pozzato C., Andreetta V., Jansson B., Arban R., Domenici E. and Carboni L., 2006. Single exposure to social defeat increases corticotropin–releasing factor and glucocorticoid receptor mRNA expression in rat hippocampus. Brain Research 1067:25–35.
Maynard Smith J. and Parker G. A., 1976. The logic of asymmetric contests. Animal Behaviour 24:159–175.
Maynard Smith J. and Price G. R., 1973. The logic of animal conflict. Nature 246:15–18.
McEwen B. S., 2000. The neobiology of stress: from serendipity to clinical relevanceur. Brain Research 886:172–189.
Miczek K. A., Fish E. W., De Bold J. F. and De Almeida R. M., 2002. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma–aminobutyric acid systems. Psychopharmacology (Berl) 163:434–458.
Minamimoto M., Sakakura Y., Soyano K., Akaba Y. and Hagiwara A., 2006. Plasma Sex Steroid Levels and Steroidogenesis in the Gonad of the Self–fertilizing Fish Rivulus marmoratus. Environmental Biology of Fishes 75:159–166.
Neat F. C., Taylor A. C. and Huntingford F. A., 1998. Proximate costs of fighting in male cichlid fish: the role of injuries and energy metabolism. Animal Behaviour 55:875–882.
Nelson R. J. and Trainor B. C., 2007. Neural mechanisms of aggression. Nature Reviews Neuroscience 8:536–546.
Oliveira R. F., Almada V. C. and Canario A. V., 1996. Social modulation of sex steroid concentrations in the urine of male cichlid fish Oreochromis mossambicus. Hormones and Behavior 30:2–12.
Oliveira R. F., Silva A. and Canário A. V. M., 2009. Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish. Proceedings of the Royal Society B: Biological Sciences 276:2249–2256.
Ong K. J., Stevens E. D. and Wright P. A., 2007. Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure. Journal of Experimental Biology 210:1109–1115.
Øverli Ø., Harris C. A. and Winberg S., 1999. Short–term effects of fights for social dominance and the establishment of dominant–subordinate relationships on brain monoamines and cortisol in rainbow trout. Brain, Behavior and Evolution 54:263–275.
Øverli Ø., Kotzian S. and Winberg S., 2002. Effects of cortisol on aggression and locomotor activity in rainbow trout. Hormones and Behavior 42:53–61.
Parker G. A., 1974. Assessment strategy and the evolution of fighting behaviour. Journal of Theoretical Biology 47:223–243.
Portavella M., Torres B. and Salas C., 2004. Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. Journal of Neuroscience 24:2335–2342.
Riechert S. E., 1998. Game Theory and Animal Contests. In: Game Theory and Animal Behavior (Dugatkin LA, Reeve HK, eds). New York, NY: Oxford University Press; 64–93.
Rodriguez–Girones M. A., Drummond H. and Kacelnik A., 1996. Effect of food deprivation on dominance status in blue–footed booby (Sula nebouxii) broods. Behavioral Ecology 7:82–88.
Rutte C., Taborsky M. and Brinkhof M. W., 2006. What sets the odds of winning and losing? Trends in Ecology and Evolution 21:16–21.
Sakakura Y. and Noakes D. L. G., 2000. Age, growth, and sexual development in the self–fertilizing hermaphroditic fish Rivulus marmoratus. Environmental Biology of Fishes 59:309–317.
Schuett G. W., 1997. Body size and agonistic experience affect dominance and mating success in male copperheads. Animal Behaviour 54:213–224.
Schuett G. W. and Grober M. S., 2000. Post–fight levels of plasma lactate and corticosterone in male copperheads, Agkistrodon contortrix (Serpentes, Viperidae): differences between winners and losers. Physiology and Behavior 71:335–341.
Schuett G. W., Harlow H. J., Rose J. D., Van Kirk E. A. and Murdoch W. J., 1996. Levels of plasma corticosterone and testosterone in male copperheads (Agkistrodon contortrix) following staged fights. Hormones and Behavior 30:60–68.
Scott A. P. and Ellis T., 2007. Measurement of fish steroids in water––a review. General and Comparative Endocrinology 153:392–400.
Scott A. P., Pinillos M. and Ellis T., 2001. Why measure steroids in fish plasma when you can measure them in water. In: Perspectives in Comparative Endocrinology (Goos T, Rastogi RK, Vaudry H, Pierantoni R, eds). Bologna: Monduzzi Editore; 1291–1295.
Scott A. P. and Sorensen P. W., 1994. Time course of release of pheromonally active gonadal steroids and their conjugates by ovulatory Goldfish. General and Comparative Endocrinology 96:309–323.
Sloman K. A., Montpetit C. J. and Gilmour K. M., 2002. Modulation of catecholamine release and cortisol secretion by social interactions in the rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology 127:136–146.
Soma K. K., 2006. Testosterone and aggression: Berthold, birds and beyond. Journal of Neuroendocrinology 18:543–551.
Stuart–Fox D., 2006. Testing game theory models: fighting ability and decision rules in chameleon contests. Proceedings of the Royal Society B: Biological Sciences 273:1555–1561.
Summers C. H., Summers T. R., Moore M. C., Korzan W. J., Woodley S. K., Ronan P. J., Hoglund E., Watt M. J. and Greenberg N., 2003. Temporal patterns of limbic monoamine and plasma corticosterone response during social stress. Neuroscience 116:553–563.
Summers C. H., Watt M. J., Ling T. L., Forster G. L., Carpenter R. E., Korzan W. J., Lukkes J. L. and Overli O., 2005. Glucocorticoid interaction with aggression in non–mammalian vertebrates: reciprocal action. European Journal of Pharmacology 526:21–35.
Taylor D. S., 1990. Adaptive specializations of the cyprinodont fish, Rivulus marmoratus. Florida Scientist 53:239–248.
Taylor D. S., 2000. Biology and ecology of Rivulus marmoratus: new insights and a review. Florida Scientist 63:242–255.
Taylor P. W. and Elwood R. W., 2003. The mismeasure of animal contests. Animal Behaviour 65:1195–1202.
Taylor P. W. and Jackson R. R., 2003. Interacting effects of size and prior injury in jumping spider conflicts. Animal Behaviour 65:787–794.
Tokarz R. R., 1987. Effects of the antiandrogens cyproterone acetate and flutamide on male reproductive behavior in a lizard (Anolis sagrei). Hormones and Behavior 21:1–16.
Tokarz R. R., 1995. Importance of androgens in male territorial acquisition in the lizard Anolis sagrei: an experimental test. Animal Behaviour 49:661–669.
Vermeulen G. J., Lambert J. G., van der Looy M. J. and Goos H. J., 1994. Gas chromatographic–mass spectrometric (GC–MS) analysis of gonadal steroids in plasma of the male African catfish, Clarias gariepinus: effects of castration or treatment with gonadotropin releasing hormone analogue. General and Comparative Endocrinology 96:288–297.
Wendelaar Bonga S. E., Balm P. H. M. and Lamers A. E., 1995. The involvement of ACTH and MSH in the stress response in teleost fish. Netherlands Journal of Zoology 45:103–106.
Whitehouse M. E. A., 1997. Experience influences male–male contests in the spider Argyrodes antipodiana (Theridiidae: Araneae). Animal Behaviour 53:913–923.
Winberg S. and Lepage O., 1998. Elevation of brain 5–HT activity, POMC expression, and plasma cortisol in socially subordinate rainbow trout. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 274:R645–654.
Wingfield J. C., 1994. Control of territorial aggression in a changing environment. Psychoneuroendocrinology 19:709–721.
Wingfield J. C., 2005. A continuing saga: The role of testosterone in aggression. Hormones and Behavior 48:253–255.
Wingfield J. C., Hegner R. E., Dufty J., Alfred M. and Ball G. F., 1990. The "challenge hypothesis": theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. The American Naturalist 136:829.
Wingfield J. C., Lynn S. and Soma K. K., 2001. Avoiding the 'costs' of testosterone: ecological bases of hormone–behavior interactions. Brain, Behavior and Evolution 57:239–251.
Woodley S. K. and Moore M. C., 1999. Ovarian hormones influence territorial aggression in free–living female mountain spiny lizards. Hormones and Behavior 35:205–214.
Yang E. J. and Wilczynski W., 2003. Interaction effects of corticosterone and experience on aggressive behavior in the green anole lizard. Hormones and Behavior 44:281–292.
Yang S.–Y., 2008. The decay function of experience effects in the contest of Kryptolebias marmoratus. Master's thesis.Taipei, Taiwan: National Taiwan Normal University.
Yodyingyuad U., de la Riva C., Abbott D. H., Herbert J. and Keverne E. B., 1985. Relationship between dominance hierarchy, cerebrospinal fluid levels of amine transmitter metabolites (5–hydroxyindole acetic acid and homovanillic acid) and plasma cortisol in monkeys. Neuroscience 16:851–858.