簡易檢索 / 詳目顯示

研究生: 吳國存
Gwo Tswin Wu
論文名稱: 烏采結構半導體的拉曼光譜與光致螢光光譜
Raman Spectroscopic and PL study of Wurtzite Structure Semiconductor
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 93
語文別: 中文
論文頁數: 61
中文關鍵詞: 烏采拉曼光譜光致螢光光譜半導體氮化銦
英文關鍵詞: wurtzite, Raman, PL, semiconductor, InN
論文種類: 學術論文
相關次數: 點閱:249下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們由Cornell大學得到一組烏采結構氮化銦塊材(膜厚>1μm)樣品進行其光學特性的分析。另一方面,我們研究烏采結構氮化鎵奈米線以及氧化鋅奈米線,從文獻上的資訊得知這兩種烏采結構半導體的能隙在3.2eV~3.4eV,位於紫外光區,與氮化銦的能隙,0.7eV~0.8eV,位於紅外光區恰好是兩個極端,因此,可以進一步比較其光學性質。
    在本論文中,我們先於室溫下量測三種不同烏采結構半導體的光致螢光光譜,藉以確認樣品的能隙,再運用不同的雷射光源當作激發光源來得到室溫下烏采結構半導體的拉曼散射光譜,所使用的雷射光源分別為325nm(He-Cd laser),442nm(He-Cd laser),488nm,514nm(Ar-ion laser),633nm(He-Ne laser)以及785nm(solid-state laser)。對於不同的烏采結構半導體在拉曼散射光譜中可以清楚的觀察到的特徵光譜模型,分別為A1(LO),E2(high),以及E2(LO)。由拉曼散射光譜圖可以清楚的發現氮化銦樣品的A1(LO)-phonon mode的位置會隨著激發光源能量的不同而有紅位移的現象。即其聲子頻率會隨著激發光源的能量的遞減而遞增,並且可以明顯的發現A1(LO)-phonon mode的峰值強度亦會隨著激發光光源能量的遞減而遞增。而氮化鎵樣品的A1(LO)-phonon mode的位置則會隨著激發光源能量的不同而有藍位移的現象。即其聲子頻率會隨著激發光源的能量的遞增而遞減,並且可以明顯的發現A1(LO)-phonon mode的峰值強度亦會隨著激發光光源能量的遞增而遞增。在氧化鋅樣品方面A1(LO)-phonon mode的峰值強度亦會隨著激發光光源能量的遞增而遞增,但是峰值不會出現明顯位移的現象。由氧化鋅所得到的結論,我們相信氮化銦與氮化鎵樣品具有很高的缺陷或雜質的存在,以致於A1(LO)聲子模在拉曼光譜中的峰值有位移現象。
    除了光譜實驗上的量測外,由於我們知道樣品表面有大量載子存在,以至於造成A1(LO)-phonon和電漿耦合效應,因此利用程式模擬來了解其耦合效應所具有的物理意義。

    We get two InN samples from Cornell university and measure their optics characteristic.On the other hand, we study the GaN nanowires and ZnO nanorods, which be able to learn crack these energy bandgap in 3.2eV to 3.4eV from information at document, lie in ultraviolet ray range, one that is with InN be able to crack, 0.7eV- 0.8eV, lying in the infrared light district to happen it is two extremes, therefor we compared its optics nature characteristic.
    In this thesis, we are prior to examine the photoluminescence of the three kinds of semiconductors to be able to know the energy bandgap, than use different wavelength laser for excitation source to measure the room temperature Ramon scattering spectrum, the laser light sources used are 325nm (He-Cd laser ), 442nm (He-Cd laser ), 488nm, 514nm (Ar-ion laser ), 633nm (He-Ne laser ) and 785nm (solid-state laser ), respectively, to investigate the A1(LO) phonon mode of Raman spectra. We observed that the A1(LO) phonon mode was shifted to their energy bandgap. Wu consider this effect cause with defect and impurity.

    摘要 i 第一章 晶體介紹與理論背景 1 1-1 烏采結構晶體之晶體結構與聲子特性 1 1-2 縱向光學聲子與電漿子的耦合效應 6 1-3 CDF機制(Charge Density Flucuation) 與IIF機制(Impurity Induced Frhlich) 9 1-4 光致螢光效應 11 1-5 共振拉曼效應 13 第二章 氮化銦(InN)樣品的成長方式與實驗結果 14 2-1 樣品的成長方式 14 2-2 光致螢光效應光譜 18 2-3 不同激發光源的拉曼光譜 20 第三章 氮化鎵(GaN)樣品的成長方式與實驗結果 26 3-1 樣品的成長方式 26 3-2 光致螢光效應光譜 31 3-3 不同激發光源的拉曼光譜 34 第四章 氧化鋅(ZnO)樣品的成長方式與實驗結果 39 4-1 樣品的成長方式 39 4-2 光致螢光效應光譜 46 4-3 不同激發光源的拉曼光譜 49 第五章 縱向光學聲子的討論與模擬 55 5-1 氧化鋅樣品與氮化鎵樣品的縱向光學聲子的討論 55 5-2 氮化銦樣品的縱向光學聲子的模擬與討論 57 第六章 結論 60

    1-1. J. M. Calleja, and Manuel Cardona, Phys. Rev. B 16, 3753 (1977)。
    1-2. Frederic Decremps, Julio Pellicer-Porres, A. Marco Saitta, Jean-Claude Chervin, and Alain Polian, Phys. Rev. B 65, 092101 (2002)。
    1-3. C. A. Arguello, D. L. Rousseau and S. P. S. Porto, Phys. Rev. 181, 1351 (1969)。
    1-4. H.Siegle, G. Kaczmarczyk, L. Filippidis,A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, Phys. Rev. B 55, 7000 (1997)。
    1-5 Z G Qian,W Z Shen,H Ogawa and Q X Guo, J.Phys.Condens.Mattter 16(2004)R381。
    1-6. C. A. Arguello, D. L. Rousseau and S. P. S. Porto, Phys. Rev. 181, 1351 (1969)。
    1-7. A. P. Jephcoat, R. J. Hemley, H. K. Mao, R. E. Cohen and M. J. Mehl, Phys. Rev. B 37,4727(1988)。
    1-8 Kittel, Introduction to Solid State Physics 7th , p301。
    1-9 G.Abstreiter, M.Cardona and A.Pinczuk, Light Scattering in Solids IV, p55 and reference therein。
    1-10 A.C.Albrecht, J. Chem. Phys. 34(1961)1476
    2-1 Hai Lu, William J. Schaff, J. Wu, Appl. Phys. Lett. 83 (2003) 1136
    2-2 Ashraful Ghani Bhuiyan et al.,J. Appl. Phys. 94 (2003) 2779
    2-3 J.Wu et al., Appl. Phys. Lett. 80 (2002)3967
    2-4 V.Y.Davydov et al., Phys. Status Solidi B 230 (2002) R4
    2-5 C.Trager-Cowan , Phys. Status Solidi (c) 2 (2005) 2240
    2-6 T.Inushima, Phys. Rev. B 68 (2003) 235204
    2-7 Mahboob et al. Phys. Rev. Lett. 92(2004)036804
    2-8 M. Kuball, William J. Schaff et al, J.Cryst.Growth. 269(2004)59
    2-9 T.Kozawa et al.,J.Appl.Phys.75(1994)1098
    3-1 Ramsteiner, O.Brandt, and K.H.Ploog, Phys. Rev. B 58(1998)1118
    3-2 H.Siegle et al. Phys. Rev. B 15(1997)7000
    3-3 K.L.Teo et al. J. Appl. Phys. 73(1998)1697
    3-4 H.D.Li and S.L.Zang, J. Appl. Phys. 91(2002)4562
    3-5 Y.G.Cao et al. J. Mater. Res. 15(2000)267
    3-6 G.S.Cheng et al. Appl. Phys. Lett. 75(1999)2455
    3-7 C.Bungaro, K.Rapcewicz, and J.Bernholc, Phys. Rev. B 61(2000)6720
    4-1 H.J.Fan et al. Appl. Phys. Lett. 86 (2005) 023113
    4-2 H.J.Fan, Appl. Phys. Lett. 86 (2005) 031909
    4-3 Xudong Wang et al. Nano Lett.4 (2004) 423
    4-4 H. Siegle et al. Phys. Rev. B 15, 7000 (1997)。
    4-5 J.M.Calleja and Manuel Cardona, Phys.Rev.B 16(1977)3753
    4-6 K.A.Alim, V.A.Fonoberov, and A.A.Balandin , Appl.Phys.Lett. 86(2005)053103
    4-7 Shu-Lin Zhang et al. Phys.Stat.Sol.(c) 2(2005)3090
    4-8 Congkang Xu et al. Solid.Stat.Comm. 122(2002)175
    4-9 M.Senthil Kumar, T.Y.Kim et al. Phys.Stat.Sol.(c) 1(2004)2554
    4-10 M.Koyano et al. Phys.Stat.Sol.A 193(2002)125
    5-1 游振威,氮化鎵奈米線中縱向光學聲子與電漿子的耦合,國立台灣師範大學物理學碩士論文(91)。
    5-2 J.S.Thakur et al. J. Appl. Phys. 95 (2004) 4795
    5-3 J.S.Thakur et al. Phys. Rev. B 71 (2005) 115203
    5-4 F.Demangeot et al. Phys. Rev. B 71 (2005) 104305

    QR CODE