研究生: |
莊創年 |
---|---|
論文名稱: |
不同形貌銅奈米粒子之制備及特性分析與機制探討 |
指導教授: |
陳家俊
Chen, Chia-Chun 陳貴賢 Chen, Kuei-Hsien 林麗瓊 Lin, Li-Chyong |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 銅 、形貌 、程溫還原 |
英文關鍵詞: | copper, shape, TPR |
論文種類: | 學術論文 |
相關次數: | 點閱:268 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當物體大小達奈米等級後其性質會有相當大的變化,使得其物理或
化學性質與巨觀時有些不同,奈米顆粒的大小與形狀對這些性質有很強
的影響,因此在近幾年來引起許多學者專家的注意。其中由於銅具有良
好的導電率(electrical conductive)、熱傳導(thermal conducting)和絕佳的
觸媒特性(catalytic),價格又相對便宜,因此受到廣泛的研究。要合成出
穩定、分散性好,且具有單一形狀的銅奈米粒子是很困難的,主要是因
為銅非常容易氧化。
在本篇論文中我們利用有機化學還原法合成法,並藉由改變界面活
性劑合成出多面體(cuboctahedral)、方形與柱狀三種銅奈米粒子,而方
形與柱狀的產率為 85.54%、34.20%,多面體則是接近百分之百。藉由
SEM、TEM、XRD、XPS與UV-Vis分析儀器來鑑定其組成結構。從實驗
結果可以得知在控制形狀的反應機制中界面活性劑HDA可以選擇性的
還原出單一晶種,TOPO則是可以選擇性的吸附在晶種的(100)面上,藉
此合成出高產率的方形結構。最後由TPR的結果可以得知,我們所合成
的銅奈米粒子在活性上具有不錯的穩定性。
The shapes and sizes of nanoscaled materials have attracted extensive
attention in recent years, due to their strong effects on the physical and
chemical properties of materials. Copper particles have been widely studied
because of its high electrical conductivity, thermal conducting and excellent
catalytic property. The synthesis of stable, monodisperse, well-defined
copper nanoparticles is difficult, partially because of copper’s propensity for
oxidation. This report describes the findings of an investigation of the
synthesis of copper nanoparticles in organic chemical reduction and
controlled shapes including 100% cuboctahedral, 34.20% rods and 85.54%
cubes by manipulate surfactant. The different shapes of copper nanoparticles
are characterized using SEM, TEM, XRD, XPS and UV-Vis. From the result,
we demonstrated the synthesis mechanism combination of the selective
formation of uniform seeds by HDA and a selective growth direction due to
the preferential adsorption of TOPO on the certain nanocrystal 100 face is
believed to lead formation of cube-shaped particles. The synthesis copper
nanoparticles have high stable catalytic property from the TPR results.
[1] S. Velu, K. Suzuki, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, J. Catal, 2000 194 373.
[2] KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE.
[3] T. Klaiber, J. Power Sources, 1996 61 61.
[4]A. Trovarelli, Catal Rev-Sci Eng, 1996 38 439.
[5] P. Ekdunge, M. Råberg, Int. J. Hydrogen Energy, 1998 23 381.
[6] P. X. Hou, Q. H. Tang, S. Bai, S. T. Xu, M. Liu, H. M. Cheng,
J. Phys. Chem. B, 2002 106 963.
[7] A. Chamber, C. Park, R. T. Baker, N. M. Rodriguez, J. Phys. Chem. B, 1998 102 4253.
[8] F. Joensen, J.R. Rostrup-Nielsen, J. Power Sources, 2002 105 195.
[9] D.J. Moon, K. Sreekumar, S.D. Lee, B.G. Lee, H. S. Kim,
Appl. Catal. A:General, 2001 215 1.
[10] W. H. Cheng, Acc. Chem. Res, 1999 32 685.
[11] I. A. Fisher, A. T. Bell, J. Catal, 1999 184 357.
[12] T. Takahashi, M. Inoue, T. Kai, Appl. Catal. A: General, 2001 218 189.
[13] Y.M. Lin, M.H. Rei, Int. J. Hydrogen Energy, 2000 25 211.
[14] J.L. Cubeiro, Fierro, G. Appl. Catal. A: General, 1998 168 307.
[15] T.L. Reitz, S. Ahmed, M. Krumpelt, R. Kumar, H.H. Kung, J. Mole. Catal. A Chemical, 2000 162 275.
[16] Gregor Hoogers, Fuel Cell technology handbook.
[17] J. A, Rodriguez, S. Ma, P. Liu, J. Hrbek, J. Evans, M. Pérez, SCIENCE 2007 318 14.
[18] Y. M Lin, M. H. Rei, Int. J. Hydrogen Energy 2000 25 211.
[19] Y. M. Lin, G. L. Lee, M. H. Rei, Catal. Today 1999 182, 430.
[20] T. Tabakova, V. Idakiev, D. Andreeva, I. Mitov, Appl. Catal.
A 2000 202, 91.
[21] S. Velu, K. Suzuki, Topics in Catal. 2003 22, 235.
[22] N. Iwasa, N. Takezawa, Top.Catal, 2003 22 215.
[23] A. Trovarelli, Catal Rev-Sci Eng, 1996 38 439.
[24] L. Mendelovici, M. Steinberg, J Catal. 1985 93 353.
[25] S. Y. Choung, M. Ferrandon, T. Krause, Catal. Today, 2005 99 257.
[26] S. Murcia-Mascaròs, R. M. Navarro, L. Gòmez-Sainero, U.
Costantino, M. Nocchetti, J. L. G. Fierro, J. Catal., 198(2001) 338.
[27] J.L. Cubeiro, G. Fierro, Appl. Catal. A: General, 1998 168 307.
[28] L. Mo, X. Zheng, C. T. Yeh, Chem. Comm., 2004 1426.
[29] F.W. Chang, H. Y. Yu, L. S. Roselin, H. C. Yang, Appl. Catal. A
2005 290, 138.
[30] T. Talahashi, M. Inoue, T. Kai, Appl.Catal. A 2001 218, 189.
[31] S Velu, K. Suzuki, Topics in Catal. 2003 22, 235.
[32] S Velu, K. Suzuki, J. Phys. Chem. B 2002 106, 12737.
[33] N. Iwasa, T. Mayanagi, W. Nomura, M. Arai, N. Takezawa, Appl.
Catal. A: General, 2003 248 153.
[34] S. Velu, K. Suzuki, T. Osaki, Catal. Lett, 1999 62 159.
[35] Lu, L.; Sui, M. L.; Lu, K. Science 2000, 287, 1463.
[36] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thompson,
Appl. Phys. Lett. 2001, 78, 718.
[37] G. Zhou, M. Lu, Z Yang, Langmuir 2006, 22, 5900.
[38] Y. Chang, M. L. Lye, H. C. Zeng, Langmuir 2005, 21, 3746.
[39] X. Ren, D. Chen, F Tang J. Phys. Chem. B 2005, 109, 15803.
[40] Y. Wang, P. Chen M. Liu Nanotechnology 2006 17 6000.
[41] X. Zhang, D. Zhang, X. Ni, H. Zheng, Solid State Communications 2006 139 412.
[42] Y. C. Zhang, G. Y. Wang, X. Y. Hu, R. Xing, Journal of Solid State Chemistry 2005 178 1609.
[43] M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guoa, E. W, Chem. Commun. 2003, 1884.
[44] Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, M. Li, Adv. Funct. Mater. 2007, 17, 933.
[45] I. Lisiecki, J. Am. Chem. Soc. 1993, 5, 3887.
[46] (a)J. Tanori, M.P. Pileni, Adv. Mater. 1995, 7, 862.; (b) M.P. Pileni, Langmuir 1997, 13, 639.
[47] C. Salzemann, I. Lisiecki, J. Urban, M. P. Pileni, Langmuir 2004, 20, 11772.
[48] C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, M. P. Pileni, J. Phys. Chem. B 2004, 108, 13242.
[49] C. Salzemann, J. Urban, I. Lisiecki, M. P. Pileni Adv. Funct. Mater. 2005, 15, 1277.
[50] Z. Liu, Y. Bando, Adv. Mater. 2003, 15, 303.
[51] S. U. Son, I. K. Park, J. Park, T. Hyeon, Chem. Commun. 2004, 778 – 779.
[52] J. Hu, T. Odom, C.M. Lieber, Acc. Chem. Res. 1999 32 435.
[53] Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 2001 293 1298.
[54] S. Sakong, A. Grob, Journal of Catalysis, 2005, 231, 420.
[55] D. Mott, J. Galkowski, L. Wang, J. Luo, C. J. Zhong,
Langmuir 2007, 23, 5740.
[56] Y. Song, E. E. Doomes, J. Prindle, R. Tittsworth, J. Hormes,
C. S. Kumar, J. Phys. Chem. B 2005 109 9330.
[57] Y. Yadong, A. Paul, NATURE 2005 437 664.
[58] V. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos,
J. A. C. S. 2002, 124, 12874.
[59] N. Cordente, M. Respaud, F. Senocq, M. J. Casanove, C. Amiens, B.
Chaudret, Nano Lett. 2001 l. 565.
[60] NIST X-ray Photoelectron Spectroscopy Database.
[61] Y. Xiong, Y. Xia Adv. Mater. 2007, 19, 3385.
[62] J. Agrell, M. Boutonnet, I. Melián-Cabrera, L. G. Fierro, Applied Catalysis A. 2003, 253, 201.