研究生: |
黃翌瑋 Huang, Yi-Wei |
---|---|
論文名稱: |
皮秒雷射製備二氧化鈦的特性及光催化性能之研究 Characteristics and Photocatalytic Performance of Titanium Dioxide Prepared by Picosecond laser |
指導教授: |
鄧敦建
Teng, Tung-Chien 鄭慶民 Cheng, Ching-Min |
口試委員: |
陳建志
Chen, Chien-Chih 鄧敦建 Teng, Tung-Chien 鄭慶民 Cheng, Ching-Min |
口試日期: | 2022/08/02 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 綠光皮秒雷射 、二氧化鈦 、黑色二氧化鈦 、鋭鈦礦 、金紅石 、光觸媒 、通氧 、亞甲基藍光降解 |
英文關鍵詞: | Green Picosecond Laser, Black Titanium Dioxide, Anatase, Rutile, Photocatalyst, oxygen, methylene blue light degradation |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202201341 |
論文種類: | 學術論文 |
相關次數: | 點閱:140 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種利用皮秒雷射製備黑色二氧化鈦(Black Titanium Oxide)的方法,使用綠光皮秒雷射在鈦金屬基板製備黑色二氧化鈦。通過調整雷射功率及改變掃描速度、掃描間距、雷射焦距、雷射頻率、加工環境,獲取黑色二氧化鈦中擁有不同比例金紅石(rutile)與銳鈦礦(anatase)。對於製備完成材料的表面形貌與結晶型態使用掃描電子顯微鏡(SEM)、X光繞射儀(XRD)、拉曼光譜儀進行測量與分析。最後通過上述測量與分析結果搭配亞甲基藍(MB)光催化降解實驗挑選出最佳的皮秒雷射製程參數,目的為探討本製程所製備的黑色二氧化鈦在光觸媒清潔領域應用的可能性。研究結果顯示,試片表面因為不同的雷射參數呈現出不同形貌的表面,且透過EDS量測結果顯示試片存在氧空缺的TiO2-x。XRD及拉曼光譜量測發現黑色二氧化鈦材料成分含有anatase、rutile、Ti2O3、TiO2-x,並且發現在富含氧的雷射加工環境中加工更有利於金紅石相態的生成,且能提升製程穩定性。照光LED燈板中心波長為385 nm情況下全數試片的亞甲基藍降解率皆明顯優於對照組的鈦金屬基板;而在中心波長445 nm可見光照射下亞甲藍降解率雖略為下降,但仍明顯高於對照組鈦金屬基板,並發現在富含氧的環境下雷射加工有利於擴大製程有效焦距範圍,且能增加光催化穩定性。照光波長在 380 nm、445 nm中,光降解時間為4小時,最高的亞甲基藍降解率則分別為61%、45%。
In this paper, a method for preparing black titanium dioxide by picosecond laser is proposed, and black titanium dioxide is prepared on titanium metal substrate by green light picosecond laser. By adjusting the laser power and changing the scanning speed, scanning distance, laser focal length, laser frequency, and processing environment, the black titanium dioxide with different ratios of rutile and anatase was obtained. Scanning electron microscope (SEM), X-ray diffractometer (XRD) and Raman spectrometer were used to measure and analyze the surface morphology and crystal form of the prepared materials. Finally, the optimal picosecond laser process parameters were selected through the above measurement and analysis results combined with methylene blue (MB) photocatalytic degradation experiments, in order to explore the possibility of the application of titanium dioxide prepared by this process in the field of photocatalytic cleaning. The research results show that the surface of the test piece has different appearances due to different laser parameters. It is inferred that the surface of the test piece is disordered, which will enhance the absorption of visible light, and the EDS measurement results show that the test piece has oxygen vacancies (TiO2-x). XRD and Raman spectroscopy measurements found that the material composition contains anatase, rutile, Ti2O3, TiO2-x, and it can be found that in the laser processing environment with rich oxygen is more conducive to form rutile and improve process stability. The degradation rate of methylene blue of all the test pieces was significantly better than that of the titanium metal substrate in the control group when the central wavelength of the LED light panel was 385 nm; while the degradation rate of methylene blue was slightly decreased under the visible light irradiation of the central wavelength of 445 nm, but still obvious is higher than the control group (titanium metal substrate), and it is found that laser processing in an oxygen-rich environment is conducive to expanding the effective focal length range of the process, and can increase the photocatalytic stability. When the illumination wavelength was 380 nm and 445 nm, the photodegradation time was 4 hours, and the highest methylene blue degradation rate was 61% and 45%, respectively.
[1]A.Y.Vorobyev,ChunleiGuo,“Femtosecond laser structuring of titanium implants,” Applied Surface Science,vol.253,issue.17, pp.7272- 7280, June. 2007.
[2]Jaime.A.Benavides,Charles.P.Trudeau,Luis.F.Gerlein,Sylvain.G.Cloutier,“Selective Photoactivation of Amorphous TiO2 Films to Anatase and/or Rutile Crystalline Phases,” ACS Applied Energy Materials, pp.3606- 3613, July. 2018.
[3]Xing.Chen,Dongxu.Zhao,Kewei.Liu,Chunrui.Wang,Lei.Liu,Binghui.Li,Zhenzhong.Zhang,Dezhen.Shen, “Laser-Modified Black Titanium Oxide Nanospheres and Their Photocatalytic Activities under Visible Light,” ACS Applied Materials & Interfaces, pp.16070- 16077, July. 2015.
[4]Elena.D.Fakhrutdinova,Anastasiia.V.Shabalina,Marina.A.Gerasimova,Anna.L.Nemoykina,Olga.V.Vodyankina,Valery.A.Svetlichnyi,“Highly Defective Dark Nano Titanium Dioxide: Preparation via Pulsed Laser Ablation and Application,” Materials, vol.13,issue.9,pp.2054, April. 2020.
[5]Massimo.Zimbone,Giuseppe.Cacciato,Mohamed.Boutinguiza,Vittorio.Privitera,Maria.Grazia.Grimaldi,“Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation,” Beilstein J. Nanotechnol., vol.8,pp.196-202, Jan. 2017.
[6]K.Siuzdak,M.Sawczak,M.Klein,G.Nowaczyk,S.Jurga,A.Cenian,“Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water,” Physical Chemistry Chemical Physics., vol.16,pp.15199-15206, Jun. 2014.
[7]A.Ali,I.Ruzybayev,E.Yassitepe,A.Karim,S.Ismat,Shah,A.S.Bhatti,“Phase Transformations in the Pulsed Laser Deposition Grown TiO2 Thin Films as a Consequence of O2 Partial Pressure and Nd Doping,”The Journal of Physical Chemistry C., 119.21,pp.11578-11587, April. 2015.
[8]Emanuele.Cavaliere,Gabriele.Ferrini,Pasqualantonio.Pingue,Luca.Gavioli, “Fractal TiO2 Nanostructures by Nonthermal Laser Ablation at Ambient Pressure,”The Journal of Physical Chemistry C., 117.44,pp.23305-23312, October. 2013.
[9]Paola.Russo,Robert.Liang,Rui.Xiu.He,Y.Norman.Zhou,“Phase transformation of TiO2 nanoparticles by femtosecond laser ablation in aqueous solutions and deposition on conductive substrates,”Nanoscale., 9,pp.6167-6177, Apr. 2017.
[10]游正一,脈衝雷射製備二氧化鈦的特性及光催化性 能之研究”,國立臺灣師範大學機電工程學系,碩士論文,2017。
[11]Paulina.Segovia,Abraham.Wong,Ricardo.Santillan,Marco.Camacho-Lopez,Santiago.Camacho-Lopez, “Multi-phase titanium oxide LIPSS formation under fs laser irradiation on titanium thin films in ambient air,” Optical Materials Express., vol.11,Issue.9,pp.2892-2906, August. 2021.
[12]劉承揚,雷射概論,https://www.ym.edu.tw/cyliu66/
[13]尤尚邦,“脈衝式雷射輔助氣壓之溝槽無模成形”,國立臺灣師範大學機電工程學系,碩士論文,2014。
[14]黃俊榮,“AZ 型鎂合金微銲接之最適參數研究”,國立台灣師範大學工業教育學系,碩士論文,2005。
[15]盧泓,蔡嘉恩,“二氧化鈦光觸媒的應用”,中正大學化學工程研究所,台灣產業服務基金會。
[16] O. Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide, ” Progress in Solid State Chemistry, vol.32, no.1-2, pp. 33-177, 2004.
[17] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahemann, “Environmental Applications of Semiconductor Photocatalysis, ” Chemical Reviews, vol. 95, no. 1, pp. 69-96, 1995.
[18] F. Huang, L. Chen, H. Wang, Z. Yan, “Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma”, Chemical Engineering Journal, vol. 162, no. 1, pp. 250-256, 2010.
[19]林永隆,“探討不同 Ag/TiO2 Ag/TiO2 之製備方法在亞甲基藍光催化 分解的影響”,國立中央大學,碩士論文,2009。
[20]余巧琳,“利用溶膠凝膠/水熱法製備二氧化鈦/多壁奈米碳管複合材料 並探討其於光催化之應用研究”,逢甲大學,碩士論文,2016。
[21]簡國明,洪長春,吳典熹,王永銘,藍怡平,“奈米 TiO2 專利地圖及 分析”,第 2 輯,行政院國家科學委員會科技技術資料中心,2003。
[22]王世敏,許祖勛,傅晶,“奈米材料原理與製備”,五南圖書,台北 市,2004。
[23]閻子峰,“奈米催化技術”,五南圖書,台北市,2004。
[24]陳光華,鄧金祥,“奈米薄膜技術與應用”,五南圖書,台北市, 2005。
[25]蔡純芳,“以旋鍍法製備二氧化鈦薄膜及特性研究”,國立臺灣師範大 學機電工程學系,碩士論文,2015。
[26]林利,“電沉積法製備氧化鎢薄膜之特性與應用研究”,國立臺灣師範 大學工業教育學系,碩士論文,2014。
[27]X.F. Zhao, X.F. Meng, Z.H. Zhang, L. Liu, D.Z. Jia, “Preparation and Photocatalytic Activity of Pb-doped TiO2 Thin Films, ” Journal of Inorganic Materials, vol. 19, no. 1, pp. 140-146, 2004.
[28] Z.H. Yuan, J.H. Jia, L.D. Zhang, “Influence of co-doping of Zn(II)+Fe(III) on the photocatalytic activity of TiO2 for phenol degradation, ” Materials Chemistry and Physics, vol. 73, no. 2-3, pp. 323-326, 2002.
[29]葉雲友,“以射頻磁控濺鍍法製備二氧化鈦光觸媒玻璃之製程參數與特性之研究”,國立臺灣師範大學工業教育學系,碩士論文,2011。
[30]王建義譯,“薄膜工程學”,全華圖書,台北市,2008。
[31]A. Karuppasamy, “Electrochromism in surface modified crystalline WO3 thin films grown by reactive DC magnetron sputtering, ” Applied Surface Science, vol. 282, no. 1, pp. 77-83, 2013.
[32] 鄭智鴻,“量身訂做的二氧化鈦光觸媒之合成及應用”,國立成功大學化學工程學系,碩士論文,2006。