研究生: |
甘鎧榕 Gan, Kai-Rong |
---|---|
論文名稱: |
以皮秒雷射多孔薄膜元件技術於氣體檢測之研製與實現 Development and Implement of Porous Thin-film Device Technique for Gas Detection Using Picosecond Laser Irradiation |
指導教授: |
張天立
Chang, Tien-Li |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 石墨烯 、薄膜電極 、超快雷射 、皮秒雷射 、氣體檢測 |
英文關鍵詞: | Graphene, Thin-film electrodes, Ultrafast laser, Picosecond laser, Gas detection |
DOI URL: | https://doi.org/10.6345/NTNU202202903 |
論文種類: | 學術論文 |
相關次數: | 點閱:175 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣體檢測晶片及其模組開發技術,一直為空氣與環境監控的重要關鍵。近年來,雷射製程科技的發展迅速,超短脈衝(Ultra-short pulse)雷射之微細製程技術,也多應用在電子、機械與生醫工程領域。本研究採用超短脈衝雷射之微細製程技術進行材料進行電極及感測器之製備,與一般半導體製程之感測器相比於設計及初步研究時製程速度較快,即無需微影製程等複雜之步驟就可完成製作。本研究透過皮秒脈衝雷射直寫(Picosecond laser direct-writing)於石墨烯(Graphene)薄膜上進行感測圖型之製作,其構型有線圈式與指叉式結構,並探討二種結構對氣體感測結果之影響。最後再試著與3D之多孔材料製成之氣體感測器比較。本研究結果顯示線圈結構式感測器type 2 (3圈)對於水氣的反應靈敏,當相對濕度RH = 47% ~ 70%時,該電阻之檢測值可自1902 Ω至1934 Ω,其靈敏度(Sensitivity)為2.3%,且在量測一氧化碳(CO)氣體,該電阻之檢測值可自1823 Ω降低至1780 Ω,其靈敏度為1.6%。另外,使用氧化石墨烯多孔結構與平面指叉狀結構量測相對濕度RH = 45% ~ 65%進行比較,在氧化石墨烯多孔結構於電阻之檢測值會由10.8 MΩ降至0.18 MΩ,其靈敏度為99%,於指叉狀結構之感測器,其電阻之檢測值由2.22 kΩ上升至2.36 kΩ,其靈敏度為7.2%,顯示立體多孔結構其感測能力較為靈敏且對水氣之反應較快,且易達到穩定。
For the gas detection, the on-chip sensor and its module for gas detection are always an important key for air and environmental monitoring. Recently, the rapid development of laser technology with ultrafast laser micromachining has applied electrical, mechanical and biomedical engineering. The aim of study is to use the ultra-short pulse laser micromachining technique to fabricate the structure electrodes and sensors. Comparing with the complex photolithography for forming the sensors, the laser process in the design and preliminary study is faster than the one. The study was used the picosecond laser direct-writing process to form the sensing patterns on graphene-based thin film, in which the two types of spiral and interdigitated structure-based device were used for gas detection. Finally, the 3D porous structure-based sensor was fabricated and compared with the 2D structure-based for gas detection. It demonstrated the spiral structure has well sensitivity for humidity measurements in H2O. The resistance of type 2 (3 turns) can measured ranging from 1902 Ω to 1934 Ω when relative humidity was measured ranging from 47% to 70%. The sensitive of type 2 for H2O was 2.3%. The resistance was measured ranging from 1823 Ω to 1780 Ω with CO by type 2 and the sensitive of CO was 1.6%. On the other hand, the results of 3D porous structure-based sensor was measured ranging from 10.8 MΩ to 0.18 MΩ when relative humidity was measured ranging from 45% to 65% and the sensitive of H2O was 99%. The results of interdigital structure electrode can be measured ranging from 2.22 kΩ to 2.36 kΩ when relative humidity was measured from 45% to 65% and the sensitive of H2O was 7.2%. The results revealed that 3D porous structure-based sensor for humidity measurements in H2O was the more sensitive and stable.
[1] Transparency Market Research
[2] C. Momma, B.N. Chichkov, S. Nolte, F. Alvensleben, A. Tiinnermann, H. Welling, B. Wellegehausen , “Short-pulse laser ablation of solid targets,” Optics Communications, vol. 129, pp. 134-142, 1996.
[3] F. C. Lucas, C. Florian, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, “Precise surface modification of polymethyl-methacrylate with near-infrared femtosecond laser ,” Applied surface science, vol. 336, pp. 170-175, 2015.
[4] T. L. Chang, Z. C. Chen, W. Y. Chen, H. C. Han, S. F. Tseng, “Patterning of multilayer graphene on glass substrate by using ultraviolet picosecond laser pulses ,” Microelectronic Engineering, vol. 158, pp. 1-5, 2016.
[5] V. Kohlschütter, P. Haenni, “Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure,” Zeitschrift für anorganische und allgemeine Chemie, vol. 158, pp. 121-144, 1919.
[6] A. K. Geim,K. S. Novoselov, “The rise of graphene,” Nature materials, vol. 6, pp. 183-191, 2007.
[7] J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, R. S. Ruoff, “Transfer of CVD-Grown monolayer graphene onto arbitrary substrates,” Acs nano, vol. 5, pp. 6916-6924, 2011.
[8] S. Ghosh, D. L. Nika, E. P. Pokatilov, A. A. Balandin, “Heat conduction in graphene: experimental study and theoretical interpretation,” New Journal of Physics, vol. 11, no.095012, 2009.
[9] Y. Yang, R. Murali, “Impact of size effect on graphene nanoribbon transport,” IEEE electron device letters, vol. 31, pp. 237-239, 2010.
[10] K. Y. Shin, J. Y. Hong, J. Jang, “Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application,” Advanced materials, vol. 23, pp. 2113-2118, 2011.
[11] Y. Si, E. T. Samulski, “Exfoliated graphene separated by platinum nanoparticles,” American Chemical Society, vol. 20, pp. 6792-6797, 2008.
[12] Y. H. Kim , C. Sachse , M. L. Machala , C. May , L. M. Meskamp , K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-Free organic solar cells,” Advance functional materials, vol. 21, pp. 1076-1081, 2011.
[13] G. F. Wang, X. M. Tao, R. X. Wang, “Fabrication and characterization of OLEDs using PEDOT:PSS and MWCNT nanocomposites,” Composites Science and Technology, vol. 68, pp. 2837-2841, 2008.
[14] J. H. Cook, H. A. Al-Attar, A. P. Monkman, “Effect of PEDOT–PSS resistivity and work function on PLED performance,” Organic Electronics, vol. 15, pp. 245-250, 2014.
[15] J. M. Yun, J. S. Yeo, J. Kim, H.G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Advance materials, vol. 23, pp. 4923-4928, 2011.
[16] Y. J. Lin, J. Y. Lee, S. M. Chen, “Changing electrical properties of PEDOT:PSS by incorporating with dimethyl sulfoxide,” Chemical Physics Letters, vol. 664, pp. 213-218, 2016.
[17] J. Li, J. Liu, C. Gao, J. Zhang, H. Sun, “Influence of MWCNTs doping on the structure and properties of PEDOT:PSS films,” International Journal of Photoenergy, vol. 2009, 2009.
[18] A. Ovsianikov, A. Deiwick, S.V. Vlierberghe, P. Dubruel, L. Mӧller, G. Dräger, B. Chichkov, “Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering”, Biomacromolecules, vol. 12, pp. 851-858, 2011.
[19] M. S. Kim, J. Son, H. Lee, H. Hwang, C. H. Choi, G. Kim, “Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process,” Current Applied Physics, vol. 14, pp. 1-7 , 2014.
[20] C. C. Yang, H.Y. Tsai, C. C. Yang, W. T. Hsiao, K. C. Huang, “Fabricating planar spiral inductances for a wireless charging module by using 355 nm ultraviolet laser ablation,” Applied Physics A, vol. 117, pp. 69-75, 2014.
[21] V. Kekkonen, S. Chaudhuri, Fergus Clarke, J. Kaisto,J. Liimatainen, S. K. Pandian, J. Piirto, M. Siltanen, A. Zolotukhin, “Picosecond pulsed laser deposition of metal-oxide sensing layers with controllable porosity for gas sensor applications," Applied Physics A, Articlenumber: 122:233, pp. 232-233, 2016.
[22] I. Nikolaou, “ Inkjet-Printed graphene oxide thin layers on love wave devices for humidity and vapor detection”, IEEE Sensors Journal, vol. 16, 2016.
[23] M. S. Mannoor, H. Tao, J. D. Clayton, A. Sengupta, D. L. Kaplan, R. R. Naik, N. Verma, F. G. Omenetto, M. C. McAlpine, “Graphene-based wireless bacteria detection on tooth enamel”, Nature communications, vol. 3, Article number: 1767, 2011.
[24] M. Assar, R. Karimzadeh,“Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation”, Journal of Colloid and Interface Science, vol. 483, pp. 275-280, 2016.
[25] Z. Ye, H. Tai, R. Guo, Z. Yuan, C. Liu, Y. Su, Z. Chen, Y. Jiang, “Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology”, Applied Surface Science, vol. 419, pp. 84-90, 2017.
[26] A. Phongphut, C. Sriprachuabwong, A. Wisitsoraat, A. Tuantranontb,S. Prichanont, P. Sritongkham, “A disposable amperometric biosensor based on inkjet-printed Au/PEDOT:PSS nanocomposite for triglyceride determination”, Sensors and Actuators B: Chemical, vol. 178, pp. 501-507, 2013.
[27] P. G. Raj, V. S. Rani, A. Kanwat, J. Jang, “Enhanced organic photovolvoltaic properties via structural modifications in PEDOT:PSS due to graphene oxide doping”, Materials Research Bulletin, vol. 74, pp. 346-352, 2016.
[28] A. Wong, A. M. Santos, O. Fatibello-Filho, “Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT:PSS”, Journal of Electroanalytical Chemistry, vol. 799, pp. 547-555, 2017.
[29] J. Niu , D. Yang , X. Ren , Z. Yang, Y. Liu, X. Zhu ,W Zhao, S. F. Liu, “Graphene-oxide doped PEDOT:PSS as a superior hole transport material for high-efficiency perovskite solar cell”, Organic Electronics, vol. 48, pp. 165-171, 2017.
[30] C. Ling, Q. Xue, Z. Han, H. Lu, F. Xia, Z. Yan, L. Deng, “Room temperature hydrogen sensor with ultrahigh-responsive characteristics based on Pd/SnO2/SiO2/Si heterojunctions”, Sensors and Actuators B: Chemical , vol. 227, pp. 438-447, 2016.
[31] S. Vallejos, I. Grácia, O. Chmela, E. Figueras, J. Hubálek, C. Cané, “Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability”, Sensors and Actuators B: Chemical , vol. 235, pp. 525-534, 2016.
[32] R. Kumar, D.K. Avasthi, A. Kaur, “Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature”, Sensors and Actuators B: Chemica , vol. 242, pp. 461-468, 2017.
[33] S.M. Jebreiil Khadem, Y. Abdi, S. Darbari, F. Ostovari, “Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors,” Current Applied Physics, vol. 14, pp. 1498-1503, 2014.
[34] J. M. Azzarelli, K. A. Mirica, J. B. Ravnsbæk, T. M. Swager, “Wireless gas detection with a smartphone via RF communication,” PNAS, vol. 111, pp. 18162-18166, 2014.
[35] V. Srivastava, K. Jain, “At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor,” Materials Letters, vol. 169, pp. 28-32, 2015.
[36] M. S. Park, K. H. Kim, M.J. Kim, Y. S. Lee, “NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 490, pp. 104-109 , 2016
[37] T. Kavinkumar, S. Manivannan, “Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection,” Ceramics International, vol. 42, pp. 1769-1776, 2016.
[38] C. L. Hsu, L. F. Chang, T. J. Hsueh,“ Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature ”, Sensors and Actuators B: Chemical , Vol. 249, pp. 265-277, 2017.
[39]. Y. Seekaew, D. Phokharatkul, A. Wisitsoraat, C. Wongchoosu, “Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene”, Applied Surface Science, vol. 404, pp. 357-363, 2017.
[40]. C. Hua, Y. Shang, Y. Wang, J. Xu, Y. Zhang, X. Li, A. Cao, “A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film”, Applied Surface Science, vol. 405, pp. 405-411,2017.