研究生: |
鄭鈺家 Zheng, Yu-Jia |
---|---|
論文名稱: |
具有高接收角的平面式環狀日光集光器 Planar Circular Solar Concentrator with a Large Acceptance Angle |
指導教授: |
鄧敦建
Teng, Tun-Chien |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 太陽能平面集光器 、全內反射 、平面式追跡 、透射式太陽能集光器 、複合式拋物線柱太陽能集光器 |
英文關鍵詞: | Planar Solar Concentrator, Total Internal Reflection, Planar Tracking, Transmitting Solar Concentrator, compound parabolic concentrator |
DOI URL: | http://doi.org/10.6345/NTNU202001207 |
論文種類: | 學術論文 |
相關次數: | 點閱:204 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一款單軸追跡高效能環狀微結構平面式日光集中器,主要分成三個部分;第一部分利用百葉式太陽光角度調整器及稜鏡微結構板追跡太陽光使太陽光入射光角度減少;第二部分使用一種用來調製光線行進角度分布的裝置進行光線角度調製;第三部分為環狀微結構平面式日光集中器,第二部份調製光線結構利用全反射使入射光線依照旋轉矩形柱之結構行進至圓形之切線角度分布;第三部分集光結構利用全反射使經過第二部分結構之日光耦合至底端之導光板內以全反射行進,並在導光板中央以高效能光電轉換電池吸收並進行光電轉換。
本文所提出的太陽能集光系統實現了單軸追跡且在太陽光譜400 nm~900 nm的AM1.5光源模擬下,以系統位於台北之設定之下,可全年且每日8:00~16:00達到8小時全日追跡進行收光,且系統最高效率達到73.6%,平均效率亦達到70%,而集中比最高可達257,平均集中比則可達240。
The paper proposes a single-axis tracking high-efficiency ring-shaped micro-structure planar solar concentrator, which is mainly include three parts; first, uses a louver-type sunlight angle adjuster and prism plate to track sunlight to reduce the angle of incident light of sun; A device for modulating the traveling angle distribution of light rays and a ring-shaped micro-structure planar solar concentrator are used as the first and second segments of the light-concentrating structure. The first-stage modulated light structure uses total reflection to make the incident light travel according to the structure of a rotating rectangular column. The tangent angle distribution to the circle; the second section of the light-collecting structure uses total reflection to make the daylight passing through the first section of the structure be coupled to the bottom of the light guide plate for total reflection, and is absorbed and performed by the high-efficiency photoelectric conversion cell in the center of the light guide plate Photoelectric conversion.
The solar light collection system proposed in this paper achieves single-axis tracking and is simulated under the AM1.5 light source with a solar spectrum of 400 nm to 900 nm, and the system is under the setting of Taipei. During 7:00 to 17:00 reaches 8 hours of full-day tracking for light collection, and the maximum efficiency of the system reaches 73.6%, the average efficiency also reaches 70%, and the concentration ratio can reach up to 257, and the average concentration ratio can reach 240.
1. W. Yaïci, E. Entchev,“Coupled unsteady computational fluid dynamics with heat and mass transfer analysis of a solar/heat-powered adsorptioncooling system for use in buildings", International Journal of Heat and Mass Transfer, Vol.144, 2019.
2. 尚億新能源 太陽能電池發電原理, http://www.sune-newenergy.com.tw/web/index.php/devicemenu
3. R. Mazzaro, A. Vomiero,“The Renaissance of Luminescent Solar Concentrators: The Role of Inorganic Nanomaterials", Adv. Energy Materials, Vol.8, no.33, 2018.
4. Concentrating Systems – Technology, https://www.concentrating.cz/technology
5. 維基百科–聚光太陽能熱發電, https://zh.wikipedia.org/wiki/%E8%81%9A%E5%85%89%E5%A4%AA%E9%98%B3%E8%83%BD%E7%83%AD%E5%8F%91%E7%94%B5
6. K. MAHDI, N. BELLEL,“Development of a Spherical Solar Collector with a cylindrical receiver", Energy Procedia,Vol.52, pp.438-448, 2014.
7. J. H. Karp, E. J. Tremblay, J. E. Ford,“Planar micro-optic solar concentrator", OPTICS EXPRESS, Vol.18, No.2, pp.1122-1133, 2010.
8. A. Cvetković, M. Hernández, P. Beníteza, J. C. Miñanoa, R. Mohedanob , A. Santamaríaa,“The XR nonimaging photovoltaic concentrator", Proc. of SPIE, Vol.6670, pp.667005, 2007.
9. 中時電子報 https://www.chinatimes.com/newspapers/20180906000290-260511?chdtv
10. J. S. Price1, X. Sheng, B. M. Meulblok, J. A. Rogers, N. C. Giebink,“Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics", Nature Communications, Vol.6, pp.1-8, no.6223, 2015.
11. 國家度量衡標準實驗室-光強度的單位:燭光(cd), https://www.nml.org.tw/measurement/new-knowledge/3603-%E5%85%89%E5%BC%B7%E5%BA%A6%E7%9A%84%E5%96%AE%E4%BD%8D%EF%BC%9A%E7%87%AD%E5%85%89.html
12. Utility Solar Power and Concentration : 2.3 Concentration Ratio https://www.e-education.psu.edu/eme812/node/8
13. P. Yin, X. Xu,Z. G. Jiang,“Ray-leakage-free planar solar concentrator featuring achromatic hybrid collectors and innovative secondary optical elements ", Optics Communications, Vol.402, pp.678-689, 2017.
14. W. Qu, H. Hong, H. Jin,“A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel", Applied Energy, Vol.248, pp.162-173, 2019.
15. J. R. Ong, H. S. Chu, C. E. Png,“Planar micro-optic solar concentrator for natural daylighting systems in tropics ", Asian Conference on Energy, Power and Transportation Electrification, 2016.
16. KatieShanks, S.Senthilarasu, Tapas K.Mallick,“Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design", Renewable and Sustainable Energy Reviews, Vol.60, pp.394-407, 2016.
17. T. C. Teng, W. C. Lai, ”Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker", Optics Express, Vol.22, no.S7, pp.A1818-A1834, 2014.
18. T. Lim, P. Kwak, K. Song, N. Kim, J. Le,“Automated dual-axis planar solar tracker with controllable vertical displacement for concentrating solar microcell arrays", Progress in Photovoltaics, Vol.25, no.1, pp.123-131, 2017.
19. K. Lee, C. W. Chien, B. Lee, A. Lamoureux, M. Shlian, M. Shtein, P. C. Ku, S. Forrest,“Origami Solar-Tracking Concentrator Array for Planar Photovoltaics", ACS Photonics 2016, Vol.3, no.11, pp.2134-2140, 2016.
20. A. J. GREDE, J. S. PRICE, N. C. GIEBINK,“Fundamental and practical limits of planar tracking solar concentrators", OPTICS EXPRESS A1635, Vol. 24, No. 26, 2016.