簡易檢索 / 詳目顯示

研究生: 鄭鈺家
Zheng, Yu-Jia
論文名稱: 具有高接收角的平面式環狀日光集光器
Planar Circular Solar Concentrator with a Large Acceptance Angle
指導教授: 鄧敦建
Teng, Tun-Chien
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: 太陽能平面集光器全內反射平面式追跡透射式太陽能集光器複合式拋物線柱太陽能集光器
英文關鍵詞: Planar Solar Concentrator, Total Internal Reflection, Planar Tracking, Transmitting Solar Concentrator, compound parabolic concentrator
DOI URL: http://doi.org/10.6345/NTNU202001207
論文種類: 學術論文
相關次數: 點閱:150下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一款單軸追跡高效能環狀微結構平面式日光集中器,主要分成三個部分;第一部分利用百葉式太陽光角度調整器及稜鏡微結構板追跡太陽光使太陽光入射光角度減少;第二部分使用一種用來調製光線行進角度分布的裝置進行光線角度調製;第三部分為環狀微結構平面式日光集中器,第二部份調製光線結構利用全反射使入射光線依照旋轉矩形柱之結構行進至圓形之切線角度分布;第三部分集光結構利用全反射使經過第二部分結構之日光耦合至底端之導光板內以全反射行進,並在導光板中央以高效能光電轉換電池吸收並進行光電轉換。
    本文所提出的太陽能集光系統實現了單軸追跡且在太陽光譜400 nm~900 nm的AM1.5光源模擬下,以系統位於台北之設定之下,可全年且每日8:00~16:00達到8小時全日追跡進行收光,且系統最高效率達到73.6%,平均效率亦達到70%,而集中比最高可達257,平均集中比則可達240。

    The paper proposes a single-axis tracking high-efficiency ring-shaped micro-structure planar solar concentrator, which is mainly include three parts; first, uses a louver-type sunlight angle adjuster and prism plate to track sunlight to reduce the angle of incident light of sun; A device for modulating the traveling angle distribution of light rays and a ring-shaped micro-structure planar solar concentrator are used as the first and second segments of the light-concentrating structure. The first-stage modulated light structure uses total reflection to make the incident light travel according to the structure of a rotating rectangular column. The tangent angle distribution to the circle; the second section of the light-collecting structure uses total reflection to make the daylight passing through the first section of the structure be coupled to the bottom of the light guide plate for total reflection, and is absorbed and performed by the high-efficiency photoelectric conversion cell in the center of the light guide plate Photoelectric conversion.
    The solar light collection system proposed in this paper achieves single-axis tracking and is simulated under the AM1.5 light source with a solar spectrum of 400 nm to 900 nm, and the system is under the setting of Taipei. During 7:00 to 17:00 reaches 8 hours of full-day tracking for light collection, and the maximum efficiency of the system reaches 73.6%, the average efficiency also reaches 70%, and the concentration ratio can reach up to 257, and the average concentration ratio can reach 240.

    第一章 序論 1 1.1 前言 1 1.2 可再生能源 2 1.3 太陽能應用 2 1.3.1 光熱轉換 2 1.3.2 光電轉換 3 1.4 集光器應用 4 1.4.1 集光器中光線之作用機制 4 1.4.2 透鏡/面鏡形狀 6 1.4.3 追跡方式 8 1.5 研究動機與目的 10 1.6 論文架構 11 第二章 基本理論與文獻回顧 12 2.1 折射定律(Refraction Law/Snell’s Law) 12 2.2 反射定律(Reflection Law) 12 2.3 全內反射(Total Internal Reflection) 13 2.4 圓錐曲線光學性質 14 2.4.1 圓錐曲線反射特性 14 2.4.2 圓錐曲線折射特性 15 2.5 光度學介紹 16 2.5.1 光通量(Luminous Flux) 17 2.5.2 照度(Illuminance) 17 2.5.3 發光強度(Luminous Intensity) 17 2.5.4 輝度(Luminance) 18 2.6 介面表面特性 19 2.7 光效率(Luminous efficiency) 20 2.8 幾何壓縮比(Geometric Concentration Ratio) 20 2.9 均齊度(Uniformity) 21 2.10 集光倍率(Concentration Ratio) 21 2.11 菲涅耳損耗(Fresnel Loss) 22 2.12 文獻回顧 24 2.12.1 具有消色差混合收集器和創新的二次光學元件之無光耗平面太陽能集光器 24 2.12.2 藉由集成光伏和太陽能熱燃料來級聯太陽能使用的光譜分離太陽能聚光器 25 2.12.3 用於熱帶地區自然採光系統的平面微光太陽能聚光器 27 2.12.4 用於聚光光伏的光學器件:材料和設計的趨勢,限制和機會 29 2.12.5 具有免對準全內反射收集器和新穎複合追跡器的平面式太陽能集光器 31 2.12.6 具有可控制垂直位移的自動雙軸平面太陽能跟踪器,用於集中太陽 能微電池陣列 32 2.12.7 追跡式類摺紙藝術陣列平面太陽能集中器 33 2.12.8 平面追跡太陽能聚光器的基本和實際限制 34 2.13 模擬軟體 36 第三章 設計原理與模型架構 37 3.1 設計發想 37 3.2 模型結構設計 37 3.2.1 環形太陽能集光器 37 3.2.2 堆疊環形太陽能集光器 45 3.2.3 一種具有光線角度調製的光學結構板設計增加β方向容忍度 46 3.2.4 導光板沉浸高折射環 53 3.2.5 太陽能吸收器設計 54 3.2.6 百葉陣列結構板 56 3.2.7 稜鏡微結構盤 59 3.3 光源條件 60 3.3.1 太陽光源張角 60 3.3.2 太陽光譜 AM 1.5 60 第四章 系統模型參數設計與優化 63 4.1系統模型參數設計與優化 63 4.2 (D)環形太陽能集光器 64 4.2.1 環形太陽能集光器尺寸說明 64 4.2.2 開口尺寸設計與驗證 66 4.2.3 導光板厚度更改與多層錐度導光板設計 68 4.2.4 貝茲曲線與導光板厚度最佳化 70 4.2.4 沉浸高折射率環與中央吸收柱最小半徑 72 4.2.5 堆疊環形太陽能集光器 74 4.3 平面追跡系統 77 4.3.1 追跡系統設計 77 4.3.2 (C)一種具有光線角度調製的光學結構板 83 4.3.3 (A)百葉陣列結構板與(B)稜鏡微結構板 86 4.4 系統效能評估 90 第五章 結論與未來展望 95 5.1 結論 95 5.2 未來展望 95 參考文獻 96

    1. W. Yaïci, E. Entchev,“Coupled unsteady computational fluid dynamics with heat and mass transfer analysis of a solar/heat-powered adsorptioncooling system for use in buildings", International Journal of Heat and Mass Transfer, Vol.144, 2019.
    2. 尚億新能源 太陽能電池發電原理, http://www.sune-newenergy.com.tw/web/index.php/devicemenu
    3. R. Mazzaro, A. Vomiero,“The Renaissance of Luminescent Solar Concentrators: The Role of Inorganic Nanomaterials", Adv. Energy Materials, Vol.8, no.33, 2018.
    4. Concentrating Systems – Technology, https://www.concentrating.cz/technology
    5. 維基百科–聚光太陽能熱發電, https://zh.wikipedia.org/wiki/%E8%81%9A%E5%85%89%E5%A4%AA%E9%98%B3%E8%83%BD%E7%83%AD%E5%8F%91%E7%94%B5
    6. K. MAHDI, N. BELLEL,“Development of a Spherical Solar Collector with a cylindrical receiver", Energy Procedia,Vol.52, pp.438-448, 2014.
    7. J. H. Karp, E. J. Tremblay, J. E. Ford,“Planar micro-optic solar concentrator", OPTICS EXPRESS, Vol.18, No.2, pp.1122-1133, 2010.
    8. A. Cvetković, M. Hernández, P. Beníteza, J. C. Miñanoa, R. Mohedanob , A. Santamaríaa,“The XR nonimaging photovoltaic concentrator", Proc. of SPIE, Vol.6670, pp.667005, 2007.
    9. 中時電子報 https://www.chinatimes.com/newspapers/20180906000290-260511?chdtv
    10. J. S. Price1, X. Sheng, B. M. Meulblok, J. A. Rogers, N. C. Giebink,“Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics", Nature Communications, Vol.6, pp.1-8, no.6223, 2015.
    11. 國家度量衡標準實驗室-光強度的單位:燭光(cd), https://www.nml.org.tw/measurement/new-knowledge/3603-%E5%85%89%E5%BC%B7%E5%BA%A6%E7%9A%84%E5%96%AE%E4%BD%8D%EF%BC%9A%E7%87%AD%E5%85%89.html
    12. Utility Solar Power and Concentration : 2.3 Concentration Ratio https://www.e-education.psu.edu/eme812/node/8
    13. P. Yin, X. Xu,Z. G. Jiang,“Ray-leakage-free planar solar concentrator featuring achromatic hybrid collectors and innovative secondary optical elements ", Optics Communications, Vol.402, pp.678-689, 2017.
    14. W. Qu, H. Hong, H. Jin,“A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel", Applied Energy, Vol.248, pp.162-173, 2019.
    15. J. R. Ong, H. S. Chu, C. E. Png,“Planar micro-optic solar concentrator for natural daylighting systems in tropics ", Asian Conference on Energy, Power and Transportation Electrification, 2016.
    16. KatieShanks, S.Senthilarasu, Tapas K.Mallick,“Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design", Renewable and Sustainable Energy Reviews, Vol.60, pp.394-407, 2016.
    17. T. C. Teng, W. C. Lai, ”Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker", Optics Express, Vol.22, no.S7, pp.A1818-A1834, 2014.
    18. T. Lim, P. Kwak, K. Song, N. Kim, J. Le,“Automated dual-axis planar solar tracker with controllable vertical displacement for concentrating solar microcell arrays", Progress in Photovoltaics, Vol.25, no.1, pp.123-131, 2017.
    19. K. Lee, C. W. Chien, B. Lee, A. Lamoureux, M. Shlian, M. Shtein, P. C. Ku, S. Forrest,“Origami Solar-Tracking Concentrator Array for Planar Photovoltaics", ACS Photonics 2016, Vol.3, no.11, pp.2134-2140, 2016.
    20. A. J. GREDE, J. S. PRICE, N. C. GIEBINK,“Fundamental and practical limits of planar tracking solar concentrators", OPTICS EXPRESS A1635, Vol. 24, No. 26, 2016.

    下載圖示
    QR CODE