簡易檢索 / 詳目顯示

研究生: 劉孟憲
Liu, Meng-Hsien
論文名稱: 以α,β-不飽和丁內醯胺衍生物與1,2-雙醯基乙烯類及香豆素衍生物進行有機催化Michael加成反應之研究
Investigation of the Organocatalytic Vinylogous Michael Addition of α,β-Unsaturated γ‑Butyrolactam to 1,2-Diacylethylenes and Coumarin derivatives
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 114
中文關鍵詞: 有機催化α,β-不飽和丁內醯胺Michael加成反應
英文關鍵詞: Organocatalytic, Vinylogous Michael Addition, α,β-Unsaturated γ‑Butyrolactam
論文種類: 學術論文
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 丁內醯胺骨架的化合物廣泛的存在於天然物中,其擁有很重要的生物活性,並在有機合成上的運用也是相當的豐富,本篇論文共有兩個主題,皆是以 α,β-不飽和丁內醯胺衍生物1為親核試劑進行研究,探討其對1,2-雙醯基乙烯23 (第一章)及香豆素衍生物57 (第二章) 進行有機催化Michael 加成反應。
    在第一章,我們成功的使用奎尼丁-硫脲衍生物催化α,β-不飽和丁內醯胺1衍生物進行Michael 加成反應,在1,2-雙醯基乙烯23建構出兩個相鄰三級碳的光學中心,並拓展其取代基的種類,增加其應用性,產率最高可達95%,非鏡像異構物比率>25:1,鏡像超越值可達99%。

    在第二章,我們使用香豆素衍生物56做為親電子試劑,合成二氫香豆素衍生物57,有別於過去α,β-不飽和丁內醯胺1的Michael加成反應研究中,大部分的反應中心為γ位置,本研究主題的化學選擇性為α位置的加成,其產率可以達到99%,並具有高非鏡像選擇性 (dr>25:1)。並且發展了一個新的反應路徑合成在α位置加成的α,β-不飽和丁內醯胺衍生物58。

    The γ-butyrolactam derivatives (5-substituted 3-pyrrolidin-2-ones) belong to a family of structurally diverse natural compounds with remarkable biological activities which also signify their importance in organic chemistry. There are two topics of this thesis, which are based on the use of α,β-unsaturated butyrolactam derivatives 1 as the nucleophile : investigation of asymmetric organocatalytic Michael addition of γ-butyrolactam 1 to ene-diones 23 (Chapter 1), and coumarin derivatives 56 (Chapter 2)
    In the chapter 1, we have demonstrated an efficient protocol using the quinidine-derived bifunctional catalyst for a highly efficient Michael addition of α,β-unsaturated γ-butyrolactam 1 to various ene-diones 23 to provide synthetically useful compounds 24. The products were obtained with high diastereo- and enantioselectivities (up to >25:1 dr and 99% ee) containing adjacent tertiary stereocenters

    In the chapter 2, a highly efficient direct vinylogous Michael addition–isomerization reaction of α,β-unsaturated γ-butyrolactam 1 and coumarin derivatives 56 by using a basic catalyst was achieved. The Morita–Baylis–Hillman type adducts 57 can be obtained in high yields (up to 99% yield) and with excellent diastereoselectivities (dr >25:1). Furthermore, a novel synthetic route for the efficient synthesis of γ-butyrolactam derivatives 58 has been demonstrated.

    目錄 簡歷 I 謝誌 II 摘要 III Abstract IV 第一章 以a,b-不飽和丁內醯胺對 1,2-雙醯基乙烯進行直接性有機不對稱 Michael加成反應之研究 2 1-1 前言 2 1-2 a,b-不飽和丁內醯胺衍生物之有機催化反應的發展與探討 2 1-3 研究動機 8 1-4 實驗結果與討論 9 1-4-1 Vinylogy選擇性 9 1-4-2 反應機構之探討 11 1-4-3 催化劑效應 11 1-4-4 溶劑效應 13 1-4-5 溫度效應 15 1-4-6 當量數及添加劑效應 16 1-4-7 取代基效應 18 1-4-8 應用 20 1-4-9 結論 21 1-5 實驗部分 22 1-5-1分析儀器及基本實驗操作 22 1-5-2實驗步驟及光譜數據 24 1-6 參考文獻 32 第二章 以a,b-不飽和丁內醯胺對香豆素衍生物進行直接性有機 Michael 加成反應合成二氫香豆素之研究 34 2-1 前言 34 2-2 二氫香豆素之有機反應的發展與探討 35 2-3 文獻回顧 38 2-4 實驗部分 40 2-5-1分析儀器及基本實驗操作 40 2-5 參考文獻 42 附錄一 44 第一章 45 1H-NMR、13C-NMR光譜圖 46 HPLC 層析圖 67 X-ray 單晶繞射結構解析與數據 80

    [1] Teo SK, Colburn WA, Tracewell WG, Kook KA, Stirling DI, Jaworsky MS et al. Clinical pharmacokinetics of thalidomide. Clin Pharmacokinet. 2004, 43, 311-327.
    [2] a) Fuson, R. C. Chem. Rev. 1935, 16, 1-27. b) Krishnamurthy, S. Journal of Chemical Education. 1982, 59, 543-547. c) Bruneau, P.; Taylor, P. J.; Wilkinson, A. J. J. Chem. Soc., Perkin Trans. 1996, 2, 2263-2269.
    [3] Denmark, S. E.; Heemstra, J. R., Jr., Beutner, G. L. Angew. Chem. Int. Ed.
    2005, 44, 4682-4698.
    [4] Yin, L.; Takada, H.; Kumagai, N.; Shibasaki, M. Angew. Chem. Int. Ed. 2013, 52, 7310 -7313.
    [5] Wei ,Y.; Shi, M. Chem. Rev. 2013, 113, 6659-6690.
    [6] Merck Index, 11th Edition, 5157
    [7] Krause, W.; Kühne, G.; Sauerbrey, N. Eur. J. Clin. Pharmacol, 1990, 38, 71-75
    [8] a) Kimura, Y.; Matsumoto, T.; Nakajima, H.; Hamasaki, T.; Matsuda, Y. Biosci Biotechnol Biochem, 57, 687-688, DOI: 10.1271/bbb.57.687. b) Rico, R.; Bermejo, F. Tetrahedron Lett. 1995, 36, 7889-7892.
    [9] Ramireddy, N.; Zhao, J. C.-G.; Tetrahedron Lett. 2014, 55, 706-709.
    [10] Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev. 2011, 111, 3076-3154.
    [11] a) Jusseau, X.; Chabaud, L.; Guillou, C. Tetrahedron, 2014, 70, 2595-2615. b) Schneider, C.; Abels, F. Org. Biomol. Chem., 2014, 12, 3531-3543.
    [12] Shepherd, N. E.; Tanabe, H.; Xu, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 3666-3667.
    [13] Lin, L.; Zhang, J.; Ma, X.; Fu, X.; Wang, R. Org. Lett. 2011, 13, 6410-6413.
    [14] Huang, H.; Jin, Z.; Zhu, K.; Liang, X.; Ye, J. Angew.Chem. Int. Ed. 2011,
    50, 3232-3235.
    [15] Zhang, Y.; Shao, Y.-L.; Xu, H.-S.; Wang, W. J. Org. Chem. 2011, 76, 1472-
    1474.
    [16] Das, U.; Chen, Y.-R.; Tsai, Y.-L.; Lin, W. Chem. Eur. J. 2013, 19, 7713-7717.
    [17] Chen. Y.-R.; Das U.; Liu, M.-H.; Lin, W. J. Org. Chem. 2015, 80, 1985-1992.
    [18] CCDC: 1025579 (24b), 1025110 (24e), and 1024723 (rac-24f).
    [19] Holmberg, E.; Hult, K. Biotechnology Lett. 1991, 13, 323-326.
    [20] 化學詞典. 顧翼東 主編.上海辭書出版社.2003: 598–599.
    [21] Farinola, N.; Piller, N. Lymphatic Research and Biology, 2005, 3, 81–86.
    DOI:10.1089/lrb.2005.3.81.
    [22] Zhang, K. M.; Dou., W.; Li, P. X.; Shen, R.; Ru , J. X.; Liu , W.; Cui , Y. M.;
    Chen, C. Y.; Liu, W. S.; Bai, D. C. Biosensors and Bioelectronics, 2015, 64,
    542-546.
    [23] Lee, T. T-Y.; Kashiwada, Y.; Huang, L.; Snider, J.; Cosentino, M.; Lee, K-H
    Bioorg. Med. Chem, 1994, 2, 1051-1056. Doi :10.1016/S0968-0896(00)82054-4
    [24] Kakiage, K.; Aoyama, Y.; Yano, T.; Otsuka, T.; Kyomen, T.; Unno, M.;
    Hanaya, M. Chem. Commun., 2014, 50, 6379-6381.
    [25] Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Kyomenb, T.; Hanaya, M. Chem.
    Commun., 2015, 51, 6315-6317.
    [26] a ) W¨orner, M.; Schreier, P.; Z. Lebensm. Unters. Forsch. 1990, 190, 425 ;
    Chem. Abstr., 113, 146812. b) Ehlers, D.; Platte, S.; Bork, W.-R.; Gerard, D.;
    Quirin, K. W. Dtsch. Lebensm.-Rundsch.,1997, 93, 77; Chem. Abstr., 126,
    329672.
    [27] Yamini, B.; Poppenga, R. H.; Braselton, W. E. ; Jr.; Judge, L. J. J Vet Diagn
    Inves,1995, 7, 420-422.
    [28] Olaharski, A. J.; Rine, J.; Marshall, B. L.; Babiarz, J.; Zhang, L.; Verdin, E.;
    Smith, M. T. PLoS.Genet.,2005, 1, 689-694.
    [29] Irita, H. ; Hashimoto, T.; Fukuyama, Y.; Asakawa, Y. Phytochemistry, 2000,
    55, 247-253.
    [30] Cambie, R. C.; Lal , A. R.; Ahmad, F. Phytochemistry, 1990, 29, 2329-2331.
    [31] Kamat, D. P.; Tilve, S. G.; Kamat, V. P.; Kirtany, J. K. 2015, 1-79. DOI:
    10.1080/00304948.2015.983805.
    [32] Lee, Y.-T.; Das, U.; Chen, Y.-R.; Lee, C.-J.; Chen, C.-H.; Yang, M.-C.; Lin, W. Adv. Synth. Catal. 2013, 355, 3154-3160.
    [33] CCDC: 1401267 (57b), 1037980 (58).
    [34] Duan, Z.; Zhang, Z.; Qian, P.; Han, J.; Pan, Y. RSC Adv, 2013, 3, 10127-10130.
    [35] Zhang, J.; Liu, X.; Ma, X.; Wang, R., Chem. Commun., 2013, 49, 3300-3302.
    [36] Ma, Y.; Zhang, G.; Zhang, J.; Yang, D.; Wang, R. Org. Lett. 2014, 16, 5358-
    5361.
    [37] Choudhury, A. R.; Mukherjee, S. Org. Biomol. Chem., 2012, 10, 7313-7320.
    [38] Yang, Y.; Dong, S.; Liu, X.; Lin, L.; Feng, X. Chem. Commun., 2012, 48, 5040-
    5042.
    [39] a) Sarma, K. D.; Zhang, J.; Curran, T. T. J. Org. Chem. 2007, 72, 3311-3318. b)
    Feng, X.; Cui, H.-L.; Xu, S.; Wu, L.; Chen, Y.-C. Chem. Eur. J. 2010, 16, 10309-10312.

    無法下載圖示 本全文未授權公開
    QR CODE