簡易檢索 / 詳目顯示

研究生: 顏佳瑩
Chia-Ying Yen
論文名稱: 以電化學法在乙二醇溶液中沉積Bi-Sb-Te薄膜及奈米線之研究
A study for electrochemical deposition of Bi-Sb-Te flims and nanowires from an ethylene glycol electrolyte
指導教授: 郭金國
Kuo, Chin-Guo
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 91
中文關鍵詞: 電化學沉積乙二醇熱電奈米線碲化鉍
英文關鍵詞: electrochemical deposition, ethylene glycol, thermoelectric nanowire, bismuth telluride
論文種類: 學術論文
相關次數: 點閱:147下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先利用循環伏安法探討Bi-Te、(Bi,Sb)2-xTe3+x在含有TeCl4,SbCl3以及Bi(NO3)3˙5H2O乙二醇溶液中的沉積行為。乙二醇溶液是除水之外可作為溶劑的另一種選擇,且乙二醇溶液具有可以在較負的電位下進行電沉積而不產生溶劑還原反應的優點。實驗結果發現當施加電位介於0.4V~-0.2V vs Ag/AgCl之範圍時,主要為Te金屬形成,而BiSbTe三元化合物則是出現在-0.2V~-0.6V的區間,此外沉積薄膜的組成主要是受乙二醇溶液中離子濃度的影響,其次才是沉積電位。為降低離子濃度對薄膜組成之影響,本論文採用脈衝電鍍方式來調控沉積物的組成比例,可以將沉積物中之(Bi+Sb)/Te比例調整至理想之2/3。另外,在本研究中亦採電化學沉積法嘗試於陽極氧化鋁板內製造不同成份的奈米線材,實驗中發現所製得的奈米線為非晶型,且受反應動力、質傳控制的相互作用使得奈米線成份趨向於Te-rich。

    In this study, Bi-Te and (Bi,Sb)2-xTe3+x depositions from the ethylene glycol solution containing TeCl4, SbCl3 and Bi(NO3)3˙5H2O were investigated by means of cyclic voltammetry. Ethylene glycol could be an alternative electrolyte to water and used for electrodeposition without reduction of the solvent in more negative potentials. Experimental results show that Te was synthesized in the potential range between 0.4 V and -0.2 V vs. Ag/AgCl, and BiSbTe deposits were obtained in the potential range between -0.2 V and -0.6 V vs. Ag/AgCl; moreover, the film composition is more dependent on ion concentrations in the ethylene glycol solution than on the deposition potential. In order to decrease the influence of the ion concentration on the film composition, the pulse plating was used to accommodate the deposit composition. The (Bi+Sb)/Te ratio of the deposit could approximate the perfect stoichiometric ratio, 2/3. Furthermore, this work makes an attempt to fabricate nanowires with various compositions in the porous anodic alumina template using electrochemical deposition. The nanowire produced in this work has the amorphous structure and the composition tends to Te-rich due to the interaction of the reaction kinetics and mass transfer.

    中文摘要 ………………………………………………………………I 英文摘要 ………………………………………………………………II 誌謝 ……………………………………………………………………III 總目錄 …………………………………………………………………IV 圖目錄 ………………………………………………………………VII 表目錄 ………………………………………………………………XIV 第一章 前言 …………………………………………………1 第二章 文獻回顧 ……………………………………………4 2-1 熱電效應 ……………………………………………4 2-1-1 席貝克效應 …………………………………………4 2-1-2 帕爾帖效應 …………………………………………5 2-1-3 湯姆森效應 …………………………………………6 2-2 熱電優值 ……………………………………………8 2-3 奈米結構熱電材料 …………………………………10 2-4 奈米線製備方法 ……………………………………12 2-5 電化學沉積原理 ……………………………………18 2-5-1 電解反應 ……………………………………………18 2-5-2 法拉第定律 …………………………………………19 2-5-3 電極極化 ……………………………………………20 2-5-4 擴散係數 ……………………………………………23 2-5-5 電沉積參數 …………………………………………25 2-6 循環伏安法 …………………………………………30 第三章 實驗方法 ……………………………………………32 3-1 實驗藥品 ……………………………………………32 3-2 實驗器材 ……………………………………………33 3-3 實驗流程 ……………………………………………34 3-3-1 陽極氧化鋁模板之製備 ……………………………36 3-3-2 Bi-Sb-Te及Bi-Te電化學分析及薄膜製備 ………39 3-3-3 Bi-Sb-Te系列奈米線製備 …………………………41 3-4 分析儀器 ……………………………………………44 第四章 實驗結果與討論 ……………………………………45 4-1 氧化鋁模板 …………………………………………45 4-2-1 Bi-Sb-Te系列薄膜 …………………………………48 4-2-1-1 利用循環伏安法探討Bi3+、Sb3+、Te4+在乙二醇 溶液中之氧化還原行為 ………………………………48 4-2-1-2 Bi3+、Sb3+、Te4+在乙二醇溶液中之擴散係數………53 4-2-2 沉積電位及脈衝模式對於Bi-Sb-Te系列薄膜 組成之影響 ……………………………………………55 4-2-2-1 定電位沉積 ……………………………………………55 4-2-2-2 脈衝沉積 ………………………………………………62 4-3 Bi-Sb-Te三元奈米線陣列製作 ………………………68 第五章 結論 ……………………………………………………80 第六章 參考文獻 ………………………………………………82 附錄A 碲化鉍二元薄膜與奈米線陣列之製作與分析 ………85

    [1] 柯賢文,科技發展政策報導,2007年9月,5期,51頁。
    [2] D. M. Rowe, Thermoelectrics handbook: macro to nano,
    Taylor & Francis, 2006, Chap. 1.
    [3] T. M. Tritt, Science, 283, 804 (1999)
    [4] W. Xie, X. Tang, Y. Yan, Q. Zhang, T. M. Tritt, J.
    Appl. Phys., 105, 113713 (2009)
    [5] W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver,
    S. Wang, J. R. D. Copley, C. M. Brown, Q. Zhang, T. M.
    Tritt, Nano Lett., 10, 3283 (2010).
    [6] A.L. Prieto, M.S. Sander, M. Martín-González, R.
    Gronsky, T. Sands, A.M. Stacy, J. Am. Chem. Soc. 123,
    7160 (2001)
    [7] M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M.
    Stacy, Adv. Mater. 14 (9), 665 (2002)
    [8] L. Trahey, C.R. Becker, A.M. Stacy, Nano Lett. 7 (8),
    2535 (2007)
    [9] J. Zhou, C. Jin, J.H. Seol, X. Li, L. Shi, Appl. Phys.
    Lett. 87, 133109 (2005)
    [10]A. Mavrokefalos, A.L. Moore, M.T. Pettes, L. Shi, W.
    Wang, X. Li, J. Appl. Phys. 105, 104318 (2009)
    [11]F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K. H. Lee, N.
    V. Myung, Electrochem. Acta, 53, 8103 (2008)
    [12]J. Klammer, J. Bachmann, W. Töllner, S. Bourgault, L.
    Cagnoon, U. Gösele, K. Nielsch, Phys. Stat. Sol. B,
    247, 1384 (2010)
    [13]T. J. Seebeck, Akad. Wiss. Berlin, 265 (1822)
    [14]朱旭山,工業材料雜誌,2010年10月,286期,119頁。
    [15]J. C. Peltier, Ann. Chem., LVI, 371 (1834)
    [16]H. E. Duckworth, Electricity and Magnetism, Holt,
    Rinehart and Winston, 1960, 182-184.
    [17]廖建能,電子月刊,2003年4月,93期,160頁。
    [18]D. M. Rowe, CRC Handbook of thermoelectrics, CRC Press,
    1995, Chap. 3.
    [19]L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B, 47, 12727
    (1993)
    [20]馬遠榮,科學發展,2004年10月,382期,73頁。
    [21]G. Patermarakis, K. Moussoutzanis, J. Chandrinos, Appl.
    Catal. A-Gen., 180, 345 (1999)
    [22]J. Fu, S. Cherevko, C. H. Chung, Electrochem. Commun.,
    10, 514 (1999)
    [23]E. Metwalli, J. F. Moulin, J. Perlich, W. Wang, A.
    Diethert, S. V. Roth, P. Müller-Buschbaum, Langmuir,
    25, 11815 (2009)
    [24]D. Wang, H. Dai, Angew. Chem. Int. Ed., 41, 4783 (2002)
    [25]J. Kong, A. M. Cassel, H. Dai, Chem. Phys. Lett., 292,
    567 (1998)
    [26]A. A. Setlur, J. M. Lauerhaas, Appl. Phys. Lett., 96,
    345 (1996)
    [27]C.C. Chen, Y. Bisrat, Z. P. Luo, R. E. Schaak, C. G.
    Chao, D. C. Lagoudas, Nanotechnology , 17, 367 (2006)
    [28]X. Y. Yuan, G. S. Wu, T. Xie, Y. Lin, W. Meng, L. D.
    Zhang, Solid State Commun., 130, 429(2004)
    [29]M. S. Sander, R. Gronsky, T. Sands, A. M. Stacy, Chem.
    Mater., 15, 335 (2003)
    [30]A. J. Yin, J. Li, W. Jian, A. J. Bennett, J. M. Xu,
    Appl. Phys. Lett., 79, 1039 (2001)
    [31]N. Lupu, Electrodeposited Nanowires and Their
    Application, INTECH, 2010, Chap. 5.
    [32]顏佳瑩、王正全、周淑金、彭美芳、李秉璋、王正和,材料年會,2002
    年11月
    [33]A. P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele,
    J. Appl. Phys., 84, 1 (1998)
    [34]李秉璋、周淑金、顏佳瑩、陳楷林、王正和,工業材料雜誌,2004年9
    月,213期,106頁。
    [35]G. E. Thompson, Thin Solid Films, 297, 192 (1997)
    [36]H. Masuda, K. Fukuda, Science, 268, 1466,(1995).
    [37]H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T.
    Tamamura, Appl. Phys. Lett., 71, 2770 (1997)
    [38]萬其超,電化學,臺灣商務印書館,民國69年2月
    [39]田福助,電化學基本原理與應用,五州出版,民國86年8月
    [40]李永舫、吳浩青,電化學動力學,科技圖書出版,2001年2月
    [41]陳亞,現代實用電鍍技術,國防工業出版,2003年1月
    [42]S. Wen, R.R. Corderman, F. Seker, A.P. Zhang, L.
    Denault, M.L. Blohm, J. Electrochem. Soc., 153, C595
    (2006)
    [43]W. J. Li, W. L. Yu, C. Y. Yen, Electrochim. Acta, in
    press (2011)
    [44]M. S. Chandrasekar, M. Pushpavanam, Electrochim. Acta,
    53, 3313 (2008)
    [45]S. Michel, S. Diliberto, C. Boulanger, N. Stein, J. M.
    Lecuire, J. Crys. Growth., 277, 274(2005)
    [46]B. B. Yoo, F. Xiao, K. N. Bozhilov, J. Herman, M. A.
    Ryan, N. V. Myung, Adv. Mater., 19, 296 (2007)
    [47]S.Diliberto, V. Richoux, N. Stein, C. Boulanger, Phys.
    Stat. Sol., 205, 2340(2008)
    [48]黃進益,電化學的原理及應用,高立圖書有限公司,民國87年6月

    下載圖示
    QR CODE