簡易檢索 / 詳目顯示

研究生: 謝佳佑
Hsieh, Chia-You
論文名稱: 應用於N型電晶體與射頻電路之靜電放電防護設計
ESD Protection Design for N-type Transistor Applications and Radio-Frequency Circuits
指導教授: 蔡政翰
Tsai, Jeng-Han
林群祐
Lin, Chun-Yu
口試委員: 黃紹璋
Huang, Shao-Chang
彭盛裕
Peng, Sheng-Yu
蔡政翰
Tsai, Jeng-Han
林群祐
Lin, Chun-Yu
口試日期: 2024/06/18
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 85
中文關鍵詞: 全晶片靜電放電防護全N型電晶體射頻電路
英文關鍵詞: whole-chip ESD protection, all N-type transistor, radio-frequency circuit
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400926
論文種類: 學術論文
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程發展,積體電路越發脆弱,而靜電荷仍存在於環境,故靜電放電為積體電路可靠度的重要議題。為了使各電路在最小的影響下有足夠的靜電放電耐受度,須考量各種因素。部分應用因成本、性能或是製程上的限制,只能採用全N型電晶體設計,因此本論文提出了全N型電晶體之靜電放電防護設計,而部分高速或射頻電路也因性能考量使用全N型電晶體設計,在此類應用下還須考量寄生電容以避免影響高頻特性,此外,面積也是一大考量,以符合成本上的要求。
    本論文提出四種全NMOS之電源間靜電放電箝制電路與一種應用於射頻電路之主動式靜電放電防護設計,前者採用全NMOS設計並可節省12-14%的面積,且於實驗結果中展現出比傳統電路更高的靜電放電耐受度、相似的箝制電壓與漏電流,而與過往常見的全NMOS防護設計相比也有足夠低的觸發電壓以應用於先進製程;後者於訊號端上使用二極體作為放電元件,但此作法在10GHz以上頻段仍有較高的插入損耗,而使用電感會使面積過大,故採用一放大器提升二極體在13-17GHz下的高頻性能,且不影響其防護能力,此提出設計相比其他文獻可有更高的效用,於未來工作中也提出了採全NMOS的主動式靜電放電防護設計。

    With the development of process technology, integrated circuits become more fragile, while electrostatic charges persist in the environment. Thus, electrostatic discharge (ESD) has been a crucial issue for the reliability of integrated circuits. In order to ensure sufficient ESD robustness for various circuits and minimize the impact on the internal circuits, various factors must be considered. Due to limitations on cost, performance, or process, these ICs consist solely of N-type transistors. Therefore, all N-type transistor ESD protection designs are proposed to meet these applications in this thesis. However, high-speed or radio-frequency circuits, which must also consider parasitic capacitance to avoid affecting the high-frequency performance, often employ an all N-type transistor design due to performance considerations. Additionally, area considerations are also critical to meet the requirement of cost.
    This thesis proposes four all-NMOS power-rail ESD clamp circuits and one active ESD protection design for radio-frequency circuits. The former adopts an all-NMOS design and can save 12-14% of the area. In the experimental results, the proposed circuits exhibit higher ESD robustness, similar clamping voltage, and comparable leakage compared to the traditional circuit. The proposed circuits also have a sufficiently low trigger voltage, making them more appropriate for advanced process technology compared to other all-NMOS ESD protection circuits. The latter uses diodes as the ESD protection device at the signal terminal, but this method still causes a high insertion loss for frequencies above 10GHz. Because using inductors will occupy a large area, an amplifier is proposed and utilized to enhance the high-frequency performance of the diodes at 13-17GHz. This amplifier has not impact on the ESD protection ability. Therefore, this proposed design for radio-frequency circuits can achieve sufficient ESD robustness and higher cost-efficiency compared to other literature. In future work, an active all-NMOS ESD protection design is also proposed to address all N-type transistor and parasitic capacitance issues.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background of ESD 2 1.3 Testing Methods 2 1.4 Background of Whole-Chip ESD Protection Circuit 5 1.4.1 Signal Loss from ESD Protection Circuit 6 1.4.2 ESD Design Window 6 1.5 Organization of Thesis 8 Chapter 2 All-NMOS Power-Rail ESD Clamp Circuit 9 2.1 Design of Traditional Power-Rail ESD Clamp Circuit 9 2.2 Designs of Proposed Power-Rail ESD Clamp Circuits 10 2.3 Simulation Results of Test Circuits 17 2.4 Experimental Results of Test Circuits 23 2.4.1 Qualities of ESD Protection 25 2.4.2 Leakage 39 2.4.3 Failure Analysis 42 2.4.4 Discussion 46 2.5 Conclusion 49 Chapter 3 Active ESD Protection Design for RF Circuits 50 3.1 Traditional ESD Protection Circuit for RF Circuits 50 3.2 Proposed ESD Protection Circuit for RF Circuits 52 3.3 Simulation Results 55 3.4 Experiment Results 58 3.4.1 Qualities of ESD Protection 59 3.4.2 High-Frequency Performance 65 3.4.3 Discussion 70 3.5 Conclusion 72 Chapter 4 Conclusion and Future Work 73 4.1 Conclusion 73 4.2 Future Work 74 Reference 77 Vita 84 Publication List 85

    M. Wang, N. Tung, J. Tzou, W. Huang, C. Shen, J. Shieh, and W. Yeh, “Digital multi-value logic gates for monolithic GaN power ICs,” 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 2020, pp. 282-285.
    M. Zhu and E. Matioli, “Monolithic integration of GaN-based NMOS digital logic gate circuits with E-mode power GaN MOSHEMTs,” 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 2018, pp. 236-239
    S. Lin and M. Ker, “Design of stage-selective negative voltage generator to improve on-chip power conversion efficiency for neuron stimulation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 11, pp. 4122-4131, Nov. 2020.
    H. Guhilot and R. Kamat, “All nMOS 10-T AQRC for monolithic chlorophyll fluorescence SPAD sensor,” IEEE Sensors Journal, vol. 11, no. 9, pp. 1975-1978, Sept. 2011.
    A. Leelasantitham and B. Srisuchinwong, “A high-frequency low-power all-NMOS all-current-mirror sinusoidal quadrature oscillator, ” 2004 IEEE Region 10 Conference TENCON 2004., Chiang Mai, Thailand, 2004, pp. 364-367.
    X. Li, K. Wang, Y. Zhou, Y. Pan, F. Meng, and K. Ma, “A wide input range all-NMOS rectifier with gate voltage boosting technique for wireless power transfer, ” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 11, pp. 4023-4027, Nov. 2023.
    T. Lee, W. Yang, and C. Wang, “A 20 GHz 8-bit all-n-transistor logic CLA using 16-nm FinFET technology,” 2021 IEEE Asia Pacific Conference on Circuit and Systems (APCCAS), Penang, Malaysia, 2021, pp. 33-36.
    L. Li, H. Liu, Z. Yang, and L. Chen, “A novel co-design and evaluation methodology for ESD protection in RFIC, ” Microelectronics Reliability, vol. 52, pp. 2632–2639, July 2012.
    M. Ker, C. Lin, and Y. Hsiao, “Overview on ESD protection designs of low parasitic capacitance for RFICs in CMOS technologies,” IEEE Transactions on Device and Materials Reliability, vol. 11, no. 2, pp. 207-218, June 2011.
    M. Ker and C. Lee, “ESD protection design for giga-Hz RF CMOS LNA with novel impedance-isolation technique,” 2003 Electrical Overstress/Electrostatic Discharge Symposium, Las Vegas, NV, USA, 2003, pp. 1-10.
    Industry Council on ESD Target Levels, “White Paper 1: A case for lowering component level HBM/MM ESD specifications and requirements,” Sep. 2011.
    Industry Council on ESD Target Levels, “White Paper 2: A case for lowering component level CDM ESD specifications and requirements,” May. 2021.
    V. Kuznetsov, “HBM, MM, and CBM ESD ratings correlation hypothesis,” IEEE Transactions on Electromagnetic Compatibility, vol. 60, no. 1, pp. 107-114, Feb. 2018.
    C. Lin, T. Chang, and M. Ker, “Investigation on CDM ESD events at core circuits in a 65-nm CMOS process,” Microelectronics Reliability, pp. 2627–2631, 2012.
    M. Sawada, T. Shintani, and K. Hasegawa, “Study of alternative test method of CDM test method on the wafer,” 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, China, 2016, pp. 748-750.
    W. Chen, M. Ker, Y. Huang, Y. Jou, and G. Lin, “Measurement on snapback holding voltage of high-voltage LDMOS for latch-up consideration,” APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, 2008, pp. 61-64.
    J. Barth, K. Verhaege, L. Henry, and J. Richner, “TLP calibration, correlation, standards, and new techniques,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 24, no. 2, pp. 99-108, April 2001.
    M. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI,” IEEE Transactions Electron Devices, vol. 46, pp. 173-183, Jan. 1999.
    M. Ker, C. Yen, and P. Shih, “On-chip transient detection circuit for system-level ESD protection in CMOS integrated circuits to meet electromagnetic compatibility regulation,” IEEE Transactions on Electromagnetic Compatibility, vol. 50, no. 1, pp. 13-21, Feb. 2008.
    S. Jung, W. Nam, J. Lee, J. Jeon, and M. Han, “A new low-power pMOS poly-Si inverter for AMDs,” IEEE Electron Device Letters., vol. 26, no. 1, pp. 23-25, Jan. 2005.
    H. Yin, S. Kim, C. Kim, J. Park, I. Song, S. Kim, S. Lee, and Y. Park, “Bootstrapped ring oscillator with propagation delay time below 1.0 nsec/stage by standard 0.5 μm bottom-gate amorphous Ga2O3-In2O3-ZnO TFT technology,” 2008 IEEE International Electron Devices Meeting, San Francisco, CA, 2008, pp. 1-4.
    C. Lin, C. Hsieh, Z. Dai, and Y. Lai, “ESD protection design for fan-out panel-level packaging,” 2022 International EOS/ESD Symposium on Design and System (IEDS), Chengdu, China, 2022, pp. 1-5.
    O. Quittard, Z. Mrcarica, F. Blanc, G. Notermans, T. Smedes, and H. Zwol, “ESD protection for high-voltage CMOS technologies,” 2006 Electrical Overstress/Electrostatic Discharge Symposium, Tucson, AZ, USA, 2006, pp. 77-86.
    S. Chen and M. Ker, “Area-efficient ESD-transient detection circuit with smaller capacitance for on-chip power-rail ESD protection in CMOS ICs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 5, pp. 359-363, May 2009.
    V. Vashchenko and S. Malobabic, “EOS protection of the low voltage gate oxide devices,” 2019 41st Annual EOS/ESD Symposium (EOS/ESD), Riverside, CA, USA, 2019.
    J. Chen and M. Ker, “Design of power-rail ESD clamp with dynamic timing-voltage detection against false trigger during fast power-on events,” IEEE Transactions on Electron Devices, vol. 65, no. 3, pp. 838-846, March 2018.
    Y. Huang and M. Ker, “Investigation of CDM ESD protection capability among power-rail ESD clamp circuits in CMOS ICs with decoupling capacitors,” IEEE Journal of the Electron Devices Society, vol. 11, pp. 84-94, 2023.
    C. Troussier, J. Bourgeat, B. Jacquier, E. Simeu, and J. Arnould, “Estimation of oxide breakdown voltage during a CDM event using very fast transmission line pulse and transmission line pulse measurements,” 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2021, pp. 1-5.
    C. Richier, N. Maene, G. Mabboux, and R. Bellens, “Study of the ESD behavior of different clamp configurations in a 0.35 μm CMOS technology,” Proceedings Electrical Overstress/Electrostatic Discharge Symposium, Santa Clara, CA, USA, 1997, pp. 240-245.
    B. Keppens, M. Mergens, J. Armer, P. Jozwiak, G. Taylor, R. Mohn, C. Trinh, C. Russ, K. Verhaege, and F. De Ranter, “Active-area-segmentation (AAS) technique for compact, ESD robust, fully silicided NMOS design,” 2003 Electrical Overstress/Electrostatic Discharge Symposium, Las Vegas, NV, USA, 2003, pp. 1-9.
    P. Galy, J. Jimenez, P. Meuris, W. Schoenmaker, and O. Dupuis, “ESD RF protections in advanced CMOS technologies and its parasitic capacitance evaluation,” 2011 IEEE International Conference on IC Design & Technology, Kaohsiung, Taiwan, 2011, pp. 1-4.
    M. Tsai, S. Hsu, F. Hsueh, C. Jou, S. Chen, and M. Song, “A wideband low noise amplifier with 4 kV HBM ESD protection in 65 nm RF CMOS,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 11, pp. 734-736, Nov. 2009.
    M. Ker, W. Lo, C. Lee, C. Chen, and H. Kao, “ESD protection design for 900-MHz RF receiver with 8-kV HBM ESD robustness,” 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers, 2002, pp. 427-430.
    M. Ker, K. Hung, and T. Tang, “Silicon-on-insulator diodes and ESD protection circuits,” U.S. Patent 6861680, Mar. 2005 (UMC).
    M. Ker, T. Chen, and C. Chang, “ESD protection design for CMOS RF integrated circuits using polysilicon diodes,” Microelectronics Reliability, vol 42, no. 6, pp. 863-872, Jun. 2002.
    B. Huang, C. Wang, C. Chen, M. Lei, P. Huang, K. Lin, and H. Wang, “Design and analysis for a 60-GHz low-noise amplifier with RF ESD protection,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 2, pp. 298–305, Feb. 2009.
    A. Han, J. Zhou, F. Du, Z. Liu, and X. Luo, “A millimeter-wave broadband reflectionless ESD protection device,” IEEE Electron Device Letters, vol. 43, no. 6, pp. 926-929, June 2022.
    C. Lin, Y. Fu, and J. Wang, “Compact ESD protection cell for multi-band millimeter-wave applications,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 1, pp. 58-61, Jan. 2020.
    B. Huang and M. Ker, “Loading reduction device and method,” US Patent 7,974,050, Jul. 5, 2011.
    L. Tiemeijer and R. Havens, “A calibrated lumped-element de-embedding technique for on-wafer RF characterization of high-quality inductors and high-speed transistors,” IEEE Transactions on Electron Devices, vol. 50, no. 3, pp. 822-829, March 2003.
    N. Li, W. Gai, B. Ye, H. Niu, and L. Lu, “A high-linearity 14GHz 7b phase interpolator for ultra-high-speed wireline applications,” 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 2022, pp. 2487-2490.
    A. Mishra, Y. Li, P. Agarwal, and S. Shekhar, “A 9b-linear 14GHz integrating-mode phase interpolator in 5nm FinFET process,” 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, pp. 1-3.
    M. Akash, M. Uddin, M. Haque, N. Pasha, M. Fahim, and F. Uddin, “Performance analysis of novel design and simulation of a microstrip patch antenna for ku-band satellite communications,” 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 2021, pp. 1-5.
    H. Zhang, W. Wang, M. Jin, Y. Zou, and X. Liang, “A novel dual-polarized waveguide array antenna for ku band satellite communications,” 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 2017, pp. 633-634.
    E. Elsheikh, I. Rafiqul, A. Ismail, M. Habaebi, and J. Chebil, “Dust storms attenuation measurements at 14GHz and 21 GHz in Sudan,” 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), Khartoum, Sudan, 2015, pp. 11-16.
    Y. Hao, Z. Xue, W. Ren, and W. Li, “Design of a 1-bit holographic impedance modulation surface antenna structure in ku band,” 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, China, 2022, pp. 1-3.
    M. Hu, J. Zhou, X. Zhou, L. Zhang, and Z. Liu, “The research on the design of the ku-band ultra-wideband RF receiver,” 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 2016, pp. 1-3.
    C. Chang and C. Lin, “Power-line-triggered ESD protection SCR for 0–20 GHz applications in CMOS technology,” IEEE Transactions on Electron Devices, vol. 70, no. 12, pp. 6103-6109, Dec. 2023.
    M. Di, Z. Pan, F. Zhang, C. Li, H. Wang, and A. Wang, “A study of ESD-mmWave-switch co-design of 28GHz distributed travelling wave switch in 22nm FDSOI for 5G systems,” IEEE Journal of the Electron Devices Society, vol. 9, pp. 1290-1296, 2021.

    無法下載圖示 電子全文延後公開
    2026/07/01
    QR CODE