研究生: |
蘇毅中 Su, Yi-Chung |
---|---|
論文名稱: |
高中學生在不同層級及不同表徵的物理解題取向 Senior high school students’ problem solving approaches when solving problems at different levels and with different representations |
指導教授: |
吳心楷
Wu, Hsin-Kai |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 132 |
中文關鍵詞: | 物理 、解題 、表徵 、空間能力 、迷思概念 |
英文關鍵詞: | physics, problem solving, representation, spatial ability, misconceptions |
DOI URL: | https://doi.org/10.6345/NTNU202203558 |
論文種類: | 學術論文 |
相關次數: | 點閱:150 下載:25 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨探討高中學生面對不同層級與不同表徵的物理試題其解題取向及表現。研究資料來源為自行設計的物理測驗試題和空間能力測驗。物理測驗試題為計算題,物理測驗試卷為兩種層級(高層級與低層級)與兩種表徵(文字與圖片)的試題交叉構成,共四種版本。依學生對試題的解題內容分為兩類取向:運動學取向與能量守恆取向。研究對象為大台北地區兩間學校的高二學生,共6個班級150人,試卷於班級內隨機分配,學生依空間能力測驗分為高、低空間能力兩組。
研究結果顯示,學生面對低層級的試題,傾向使用運動學取向解題,且使用運動學解題較易得到分數;而面對高層級的試題,學生傾向使用能量守恆取向解題,且以此取向較易得到分數。當學生面對不同表徵的試題,其解題取向皆以運動學取向解題為主。而不同空間能力的學生沒有特定的解題取向傾向。學生在物理解題時常見的錯誤可分為「與物理概念有關」、「與物理概念無關」兩大類,可細分為9項,其中「忽略系統完整受力」、「物理公式錯誤」此兩項在所有錯誤類型中佔所占比例最高,此兩類屬於與物理概念有關的錯誤類型。
本研究顯示學生對於物體運動的相關物理試題,大多數情況顯示學生傾向使用運動學進行解題。然而學生不論使用何種解題取向,須協助學生物理系統的分析與物理量的使用。
This study aims at investigating high school students’s problem-solving approaches when they solved physics problems at different levels and with different representations. Research sources were a self-designed physics problem-solving test and spatial ability tests. The physics test included open-ended questions and was designed in four versions by two levels (high-level and low-level) and two representations (text and diagram). According to the students' answers to the questions, two problem-solving approaches were identified: kinematic and energy conservation. A total of 150 students from six physics classes of two senior high schools in the Taipei area participanted in the study. The students were then divided into the high and low spatial ability groups by their scores of the spatial ability test.
The results showed that when solving the low-level questions students tended to use the kinematics approach and performed better than those who used the energy approach. On the other hand, when facing the high-level questions, students tended to take the energy approach which was more effective than the other approach. Additionally, problem representations did not affect students’ problem-solving approach and for either one of the representations, a majority of students used the kinematic approach. The levels of spatial ability also did not influence students’ problem-solving approaches. Finally, the common errors students made in physics problem-solving could be categorized into 9 types. Among them, two of the most frequent ones were “ignoring the forces of the system” and “using wrong physical equations” and associated with students’ understandings of physics concepts.
This study suggests that Taiwanese high school students tend to take the kinematic approach when they face physic problems related to the movement of objects. However, no matter which approach is used by students, attention needs to be paid to how students analyze the forces of the system and whether they correctly use physics equations
中文部分
左台益,蔡志仁(2001)。高中生建構橢圓多重表徵之認知特性。科學教育學刊,9(3),1-17。
吳文如(2004)。國中生空間能力與數學成就相關因素之研究(未出版的碩士論文)。 台北市:台北師範學院數理教育研究所。
李俊彥(2004)。不同題目表徵型式的面積問題對國三學生解題表現之探討(未出版之博士論文)。高雄市:國立高雄師範大學。
洪文東(2006)。以創造性問題解決教學活動設計提升學生解決問題能力。科學教育研究與發展季刊,43,26-42。
康鳳梅(2002)。高工學生空間能力指標建構之研究(1/2)。行政院國家科學委員會專題研究計畫期中進度報告(NSC91-2516-S-003-007),台北市:國立台灣師範大學工業教育學系。
康鳳梅、簡慶郎、鍾怡慧、詹秉鈞與盧永昌(2006)。高工學生空間能力常模及空間能力資源網建構之研究。師大學報,52(3),1-14。
張俊彥、翁玉華(2000)。我國高一學生的問題解決能力與其科學過程技能之相關性研究。科學教育學刊,8(1),35-56。
陳李綢(1998)。教育心理學。台北:五南出版社。
陳章正、蘇明俊、江新合(2007。高中物理解題教學及評量策略之行動研究。屏東教育大學學報,27,103-128。
曾永祥、許瑛玿(2006)。線上課程對高二學生四季成因概念學習的影響。科學教育學刊,14(3),257-282。
黃茂在、陳文典(2004)。「問題解決」的能力。科學教育月刊,273, 21-41。
劉家樟、楊凱琳、許慧玉(2012)。小六學生不同代數表徵的解題表現、教師布題順序與代數教學信念之研究。當代教育研究季刊,20(2),93-133。
蔡興國、陳錦章、張惠博(2010)。高中學生解題歷程之力圖表徵與列式關係之研究。 科學教育學刊,18(2),155-175。
鄭麗玉(1993)。認知心理學--理論與應用。臺北: 五南出版社。
英文部分
Ainsworth, S. E., Wood, D. J., & O'Malley, C. (1998). There's more than one way to solve a problem: Evaluating a learning environment to support the development of children's multiplication skills. Learning and Instruction, 8(2), 141-157.
Ainsworth, S. E. (1999). The functions of multiple representations. Computers & Education, 33, 131-52.
Ainsworth, S. E. & VanLabeke, N. (2004). Multiple forms of dynamic representation. Learning and Instruction . Learning and Instruction, 14(3), 241-255.
Ainsworth, S. E. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.
Alibali, M. W., Phillips, K. M. O., & Fischer, A. D. (2009). Learning new problem-solving strategies leads to changes in problem representation. Cognitive Development, 24, 89–101.
Bausell B. R. & Li. Y. F. (2002). Power Analysis for Experimental Research. Cambridge University Press.
Blatto-Vallee, G., Kelly, R. R., Gaustad, M. G., Porter, J., & Fonzi, J. (2007). Visual-spatial representation in mathematical problem-solving by deaf and hearing students. Journal of Deaf Studies and Deaf Education, 12, 432–448.
Boonen, A. J. H., Van der Schoot, M., Van Wesel, F., De Vries, M. H., & Jolles, J. (2013). What underlies successful word problem solving? A path analysis in sixth grade students. Contemporary Educational Psychology, 38, 271–279.
Carter, C. S. , LaRussa, M. A., & Bonder, G. M. (1987). A study of two measures of spatial ability as predictors of success in different levels of general chemisty. Journal of Research in Science Teaching, 24(7), 645-657.
Chiappetta, E. L., & Russell, J. M. (1982). The relationship among logical thinking, problem solving instruction, and knowledge and application on earth science subject matter. Science Education, 66, 85-93.
Cox, R., & Brna, P. (1995). Supporting the use of external representations in problem solving: The need for fexible learning environments. Journal of Artificial Intelligence in Education, 6(2/3), 239-302.
Danish, J. and Enyedy, N. (2007). Remember, we have to do all the parts of the rose:Negotiated representational mediators in a K-1 science classroom. Science Education, 1-35.
De Cock, M. (2012). Representation use and strategy choice in physics problem solving. Physical Review Special Topics - Physics Education Research, 8, 020117.
Fisher, K. (1999). Exercises in drawing and utilizing free-body diagrams? . The Physics Teacher, 37, 434-435.
Gardner, H., & Hatch, T. (1989). Educational Implications of the Theory of Multiple Intelligences. Educational Researcher, 18(8), 4-10. doi: 10.3102/0013189x018008004.
Gorgorio, N. (1988). Exploring the functionality of visual and non-visual strategies in solving rotation problems. Educational Studies in Mathematics, 35, 207-23l.
Greenfield, L. B. (1987). Teaching thinking through problem solving. New Directions for Teaching and Learning, 30, 5-22.
Halloun, I. A., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53,1043-1055.
Kohl, P. B., & Finkelstein, N. D. (2006). Effects of representation on students solving physics problems: a fine-grained characterization. Physical Review Special Topics - Physics Education Research, 2. 010106.
Kozhevnikov, M., Hegarty, M., & Mayer, R. E. (2002a). Visual/spatial abilities in problem solving in physics. In M. Anderson, B. Meyer, & P. Olivier (Eds.), Diagrammatic Representations and Reasoning, 155–173.
Kozhevnikov, M., Motes, M., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31, 549–579.
Lawson, R. A., & McDermot, L. C. (1987). Student understanding of the work-energy and impulse-momentum theorems. American Journal of Physics, 55, 811-817.
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta--analysis . Child Development, 56(6), 1479. doi: 10.1111/1467-8624.ep7252392.
Lohman, D. F. (1979). Spatial ability: A review and reanalysis of the correlational literature (Tech. Rep. No. 8), Stanford, CA: Stanford University, Aptitude Research project. School of Education. (NTIS NO. AD-A075 972).
Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.). Advances in the psychology of human intelligence 4 , (181-248), Hillsdale, NJ: Lawrence Erlbaum.
Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395-405. doi: 10.1002/tea.3660220503.
Mayer, R. E. (2003). The promise of multimedia learning: using the same instructional design methods across different media. Learning and Instruction, 13, 125–139.
Mayer, R. E. (2010). Problem solving and reasoning. Learning and cognition in education, 112–117.
McDermott, L. C., Rosenquist, M. L., & van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503-513.
McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-918.
Meltzer, D. E. (2005). Relation between students' problem-solving performance and representational format. American Journal of Physics, 73(73), 463–478.
Meriam, J. L., & Kraige. L. G. (2003). Engineering mechanics. New York: Wiley.
Pallrand, G.J., & Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching, 21(5), 507-516.
Reif, F. (1995). Millikan Lecture 1994: Understanding and teaching important scientific thought processes. American Journal of Physics,63(1), 17-32.
Schofield, N. J., & Kirby, J. R. (1994). Position location and topographical maps: Effects of task factors, training, and strategies. Cognition and Instruction, 12(1), 35-47.
Singh, C. (2008). Assessing student expertise in introductory physics with isomorphic problems. II. Effect of some potential factors on problem solving and transfer. Physical Review Special Topics- Physics Education Research 4, 010105.
Tambychik, T., & Meerah, T. (2010). Students’ difficulties in mathematics problem-solving: What do they say? Procedia Social and Behavioral Sciences, 8, 142-151.
Tartre, L. A. (1990). Spatial orientation skill and mathemati- cal problem solving. Journal for Research in Mathematics Education, 2l(3), 2l6-229.
Teodorescu, R. E., Bennhold, C., Feldman, G., & Medsker, L. (2013). New approach to analyzing physics problems: a taxonomy of instroductory physics problems. Physical Review Special Topics- Physics Education Research, 9. 010103.
Van Heuvelen, A. (1991). Overview, Case Study Physics. American Journal of Physics, 59, 898-907
van Garderen, D., & Montague, M. (2003). Visual–spatial representation, mathematical problem solving and students of varying abilities. Special Needs Research & Practice, 18(4), 246–254.
Wallas, G. (1926). The Art of Thought. New York: Harcourt-Brace.
Walsh L. N., R. G. Howard, and B. Bowe. (2007). Phenomenographic study of students’ problem solving approaches in physics. Physical Review Special Topics - Physics Education Research. 3, 020108.
Wu, H. K., & Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in scientific processes. Journal of Science Education and Technology, 21(6), 754-767.
Zhang, J. ,& Norman, D. A . (1994). Representations in distributed cognitive tasks. Cognitive Science , 18, 87 -122.