簡易檢索 / 詳目顯示

研究生: 林志謙
Lin, Chih-Chien
論文名稱: 不同認知負荷的體操運動課程對兒童視覺空間工作記憶及前額葉氧合能力的影響:隨機對照試驗研究
The effects of gymnastics exercise programs with different cognitive loads on visuospatial working memory and prefrontal cortex oxygenation in children: A randomized controlled trial study
指導教授: 洪聰敏
Hung, Tsung-Min
口試委員: 洪巧菱
Hung, Chiao-Ling
黃崇儒
Huang, Chung-Ju
蔡佳良
Tsai, Chia-Liang
張育愷
Chang, Yu-Kai
洪聰敏
Hung, Tsung-Min
口試日期: 2025/01/11
學位類別: 博士
Doctor
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 76
中文關鍵詞: 認知執行功能運動身體活動
英文關鍵詞: cognition, executive function, exercise, physical activity
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202500050
論文種類: 學術論文
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在透過使用近紅外光譜技術,探討不同認知負荷的體操運動課程對兒童視覺空間工作記憶和前額葉氧合能力的影響。研究採用隨機對照試驗的平行研究設計。在台北地區招募了90名年齡介於7至10歲的健康兒童參與者,並隨機將他們分配到高認知負荷組、低認知負荷組和控制組。高認知負荷組和低認知負荷組將分別參與為期8週的體操運動介入,而控制組則進行為期8週的靜態課程介入。在介入前後,將對所有參與者進行視覺空間工作記憶的評估,同時使用近紅外光譜技術檢測前額葉血紅蛋白濃度的變化。研究結果顯示,相較於前測,高認知負荷組及低認知負荷組在後測顯著提高工作記憶的反應正確率及辨別能力,此外,在後測結果中,高認知負荷組在工作記憶的反應正確率及辨別能力顯著高於靜態控制組。然而,在帶氧血紅蛋白濃度方面,發現有顯著的情境主效果,但沒有發現顯著交互作用。事後分析發現高工作記憶負荷 (即,2-back情境) 誘發的帶氧血紅蛋白濃度顯著高於低工作記憶負荷 (即,0-back情境)。進一步的相關分析結果表明,反應正確率及辨別能力的提升與帶氧血紅蛋白濃度的增加呈現顯著正相關。這項研究結果意味著,體操運動課程能普遍性的促進工作記憶表現,且結合認知負荷能展現出更大程度的促進效果。然而,雖然前額葉氧合能力與工作記憶表現之間存在正向關聯性,但工作記憶表現的促進效果並不完全依賴前額葉氧合能力的益處。

    This study employs functional near-infrared spectroscopy (fNIRS) to investigate the effects of gymnastics exercise programs with different cognitive loads on children's visuospatial working memory and prefrontal cortex oxygenation. Ninety healthy children aged 7 to 10 from Taipei City were randomly assigned to high cognitive load (HG), low cognitive load (LG), and control (SC) groups. The HG and LG groups undergo an 8-week gymnastics intervention program combining different cognitive load levels. Pre- and post-intervention assessments include visuospatial working memory tests and monitoring of prefrontal cortex oxy-hemoglobin (HbO2) concentration. The study results showed significant post-intervention improvements in response accuracy and d-prime (d') for both HG and LG groups, with the HG group outperforming the LG group. Additionally, in the post-test, the HG group demonstrated significantly higher response accuracy and d' compared to the SC group. A main effect of conditions is observed in HbO2 concentration, with higher levels induced in high working memory load compared to low working memory load conditions. Further correlation analysis reveals a positive association between response accuracy, d' improvement and HbO2 concentration increase. These findings suggest that gymnastics programs with higher cognitive load can enhance working memory performance more efficiently. However, while a positive correlation exists between working memory performance and prefrontal cortex oxygenation, performance improvement is not solely dependent on prefrontal cortex oxygenation benefits.

    CHAPTER 1: INTRODUCTION 1 Section 1: Background 1 Section 2: Purpose and Hypotheses 5 CHAPTER 2: REVIEW OF LITERATURE 7 Section 1: Working Memory and Visuospatial Working Memory 7 Section 2: Long-term Exercise and Working Memory 8 Section 3: Cognitive Load and Cognitive Adaptation Models 10 Section 4: Long-term Exercise and Cognitive Load on Working Memory 12 Section 5: Long-term Exercise, Working Memory, and fMRI 14 Section 6: Applications of fNIRS in Exercise–Cognition Science 16 Section 7: Long-term Exercise, Working Memory, and fNIRS 17 Section 8: Summary of Literature Review 23 CHAPTER 3: METHODOLOGY 25 Section 1: Participants 25 Section 2: Experimental Procedures 26 Section 3: Intervention 28 Section 4: Measurements 32 Section 5: Working Memory Data Processing 39 Section 6: Prefrontal Oxygenation Data Processing 40 Section 7: Statistical Analysis 41 CHAPTER 4: RESULTS 43 Section 1: Participants Characteristics 43 Section 2: Manipulation Checks 44 Section 3: Physical Fitness Results 44 Section 4: Behavior Results 47 Section 5: HbO2 Concentration Results 49 Section 6: Bivariate Correlation Analysis 51 CHAPTER 5: DISCUSSION 53 Section 1: Summary of Findings 53 Section 2: Behavior Indices 54 Section 3: HbO2 Concentration Indices 57 Section 4: Overall Discussion 61 Section 5: Strengths and Limitations 62 Section 6: Conclusions 64 References 65

    Åberg, D. (2010). Role of the growth hormone/insulin-like growth factor 1 axis in neurogenesis. Pediatric Neuroendocrinology, 17, 63-76. https://doi.org/10.1159/000262529
    Al-Omairi, H. R., Fudickar, S., Hein, A., & Rieger, J. W. (2023). Improved motion artifact correction in fNIRS data by combining wavelet and correlation-based signal improvement. Sensors, 23(8), 3979. https://doi.org/10.3390/s23083979
    Alesi, M., Bianco, A., Luppina, G., Palma, A., & Pepi, A. (2016). Improving children's coordinative skills and executive functions: the effects of a football exercise program. Perceptual and Motor Skills, 122(1), 27-46. https://doi.org/10.1177/0031512515627527
    Allen, K., Higgins, S., & Adams, J. (2019). The relationship between visuospatial working memory and mathematical performance in school-aged children: A systematic review. Educational Psychology Review, 31, 509-531. https://doi.org/10.1007/s10648-019-09470-8
    Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119-126. https://doi.org/10.1016/S1364-6613(00)01593-X
    Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1-29. https://doi.org/10.1146/annurev-psych-120710-100422
    Baddeley, A. (2020). Working memory. In Memory (pp. 71-111). Routledge.
    Baddeley, A. D., & Hitch, G. J. (1974). Working memory (Vol. 8). New York: GA Bower (ed), Recent Advances in Learning and Motivation.
    Best, J. R. (2010). Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Developmental Review, 30(4), 331-351. https://doi.org/10.1016/j.dr.2010.08.001
    Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81(6), 1641-1660. https://doi.org/10.1111/j.1467-8624.2010.01499.x
    Bhide, A., Shah, P. S., & Acharya, G. (2018). A simplified guide to randomized controlled trials. Acta Obstetricia et Gynecologica Scandinavica, 97(4), 380-387. https://doi.org/10.1111/aogs.13309
    Brown, L., Sherbenou, R. J., & Johnsen, S. K. (2010). Test of Nonverbal Intelligence: TONI-4. Austin, TX: Pro-ed.
    Chance, B., Anday, E., Nioka, S., Zhou, S., Hong, L., Worden, K., Li, C., Murray, T., Ovetsky, Y., & Pidikiti, D. (1998). A novel method for fast imaging of brain function, non-invasively, with light. Optics Express, 2(10), 411-423. https://doi.org/10.1364/OE.2.000411
    Chao, Y. P., Wu, C. W., Lin, L. J., Lai, C. H., Wu, H. Y., Hsu, A. L., & Chen, C. N. (2020). Cognitive load of exercise influences cognition and neuroplasticity of healthy elderly: An exploratory investigation. Journal of Medical and Biological Engineering, 40, 391-399. https://doi.org/10.1007/s40846-020-00522-x
    Chen, F. T., Chen, Y. P., Schneider, S., Kao, S. C., Huang, C. M., & Chang, Y. K. (2019). Effects of exercise modes on neural processing of working memory in late middle-aged adults: An fMRI study. Frontiers in Aging Neuroscience, 11, 224. https://doi.org/10.3389/fnagi.2019.00224
    Chen, Y., Lu, Y., Zhou, C., & Wang, X. (2020). The effects of aerobic exercise on working memory in methamphetamine-dependent patients: Evidence from combined fNIRS and ERP. Psychology of Sport and Exercise, 49, 101685. https://doi.org/10.1016/j.psychsport.2020.101685
    Cicone, Z. S., Holmes, C. J., Fedewa, M. V., MacDonald, H. V., & Esco, M. R. (2019). Age-based prediction of maximal heart rate in children and adolescents: A systematic review and meta-analysis. Research Quarterly for Exercise and Sport, 90(3), 417-428. https://doi.org/10.1080/02701367.2019.1615605
    Coetsee, C., & Terblanche, E. (2017). Cerebral oxygenation during cortical activation: The differential influence of three exercise training modalities. A randomized controlled trial. European journal of applied physiology, 117, 1617-1627. https://doi.org/10.1007/s00421-017-3651-8
    Crova, C., Struzzolino, I., Marchetti, R., Masci, I., Vannozzi, G., Forte, R., & Pesce, C. (2014). Cognitively challenging physical activity benefits executive function in overweight children. Journal of sports sciences, 32(3), 201-211. https://doi.org/10.1080/02640414.2013.828849
    Cui, X., Bray, S., & Reiss, A. L. (2010). Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage, 49(4), 3039-3046. https://doi.org/10.1016/j.neuroimage.2009.11.050
    Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037-2078. https://doi.org/10.1016/j.neuropsychologia.2006.02.006
    Di Russo, F., Bultrini, A., Brunelli, S., Delussu, A. S., Polidori, L., Taddei, F., Traballesi, M., & Spinelli, D. (2010). Benefits of sports participation for executive function in disabled athletes. Journal of Neurotrauma, 27(12), 2309-2319. https://doi.org/10.1089/neu.2010.1501
    Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
    Diamond, A. (2015). Effects of physical exercise on executive functions: going beyond simply moving to moving with thought. Annals of Sports Medicine and Research, 2(1), 1011.
    Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 34-48. https://doi.org/10.1016/j.dcn.2015.11.005
    Doi, T., Makizako, H., Shimada, H., Park, H., Tsutsumimoto, K., Uemura, K., & Suzuki, T. (2013). Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: A fNIRS study. Aging Clinical and Experimental Research, 25, 539-544. https://doi.org/10.1007/s40520-013-0119-5
    Drollette, E. S., Shishido, T., Pontifex, M. B., & Hillman, C. H. (2012). Maintenance of cognitive control during and after walking in preadolescent children. Medicine & Science in Sports & Exercise, 44(10), 2017-2024. https://doi:10.1249/MSS.0b013e318258bcd5
    Dumontheil, I., & Klingberg, T. (2012). Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later. Cerebral Cortex, 22(5), 1078-1085. https://doi.org/10.1093/cercor/bhr175
    Duncan, A., Meek, J. H., Clemence, M., Elwell, C. E., Fallon, P., Tyszczuk, L., Cope, M., & Delpy, D. T. (1996). Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatric Research, 39, 889-894. https://doi.org/10.1203/00006450-199605000-00025
    Feng, X., Zhang, Z., Jin, T., & Shi, P. (2023). Effects of open and closed skill exercise interventions on executive function in typical children: A meta-analysis. BMC Psychology, 11(1), 420. https://doi.org/10.1186/s40359-023-01317-w
    Fishburn, F. A., Norr, M. E., Medvedev, A. V., & Vaidya, C. J. (2014). Sensitivity of fNIRS to cognitive state and load. Frontiers in Human Neuroscience, 8, 76. https://doi.org/10.3389/fnhum.2014.00076
    Gau, S. S. F., Shang, C. Y., Liu, S. K., Lin, C. H., Swanson, J. M., Liu, Y. C., & Tu, C. L. (2008). Psychometric properties of the Chinese version of the Swanson, Nolan, and Pelham, version IV scale–parent form. International Journal of Methods in Psychiatric Research, 17(1), 35-44. https://doi.org/10.1002/mpr.237
    Gentile, A. M. (2000). Skill acquisition: Action, movement, and neuromotor processes. Movement Science, 111-187.
    Giles, D., Draper, N., & Neil, W. (2016). Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. European Journal of Applied Physiology, 116, 563-571. https://doi.org/10.1007/s00421-015-3303-9
    Greiff, S., Wüstenberg, S., Goetz, T., Vainikainen, M. P., Hautamäki, J., & Bornstein, M. H. (2015). A longitudinal study of higher-order thinking skills: Working memory and fluid reasoning in childhood enhance complex problem solving in adolescence. Frontiers in Psychology, 6, 1060. https://doi.org/10.3389/fpsyg.2015.01060
    Gu, Q., Zou, L., Loprinzi, P. D., Quan, M., & Huang, T. (2019). Effects of open versus closed skill exercise on cognitive function: A systematic review. Frontiers in Psychology, 10, 1707. https://doi.org/10.3389/fpsyg.2019.01707
    Hapala, E. (2012). Physical activity, academic performance and cognition in children and adolescents. A systematic review. Baltic Journal of Health and Physical Activity, 4(1), 7. https://doi.org/10.2478/v10131-012-0007-y
    Haverkamp, B. F., Wiersma, R., Vertessen, K., van Ewijk, H., Oosterlaan, J., & Hartman, E. (2020). Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: A meta-analysis. Journal of Sports Sciences, 38(23), 2637-2660. https://doi.org/10.1080/02640414.2020.1794763
    Hecksteden, A., Grütters, T., & Meyer, T. (2013). Association between postexercise hypotension and long-term training-induced blood pressure reduction: A pilot study. Clinical Journal of Sport Medicine, 23(1), 58-63. https://doi.org/10.1097/JSM.0b013e31825b6974
    Heeger, D., & Landy, M. (1997). Signal detection theory. Department of Psychology., Stanford University., Stanford, CA, Teaching Handout.
    Henderson, S. E. (2007). Movement assessment battery for children—Second edition. (No Title).
    Herold, F., Müller, P., Gronwald, T., & Müller, N. G. (2019). Dose–response matters!–A perspective on the exercise prescription in exercise–cognition research. Frontiers in Psychology, 10, 2338. https://doi.org/10.3389/fpsyg.2019.02338
    Herold, F., Wiegel, P., Scholkmann, F., & Müller, N. G. (2018). Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in exercise–cognition science: A systematic, methodology-focused review. Journal of Clinical Medicine, 7(12), 466. https://doi.org/10.3390/jcm7120466
    Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58-65. https://doi.org/10.1038/nrn2298
    Hollingshead, A. (1965). Two-factor index of social position. (No Title).
    Hsieh, S. S., Lin, C. C., Chang, Y. K., Huang, C. J., & Hung, T. M. (2017). Effects of childhood gymnastics program on spatial working memory. Medicine & Science in Sports & Exercise, 49(12), 2537-2547. https://doi.org/10.1249/MSS.0000000000001399
    Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48(10), D280-D298. https://doi.org/10.1364/AO.48.00D280
    Hutmacher, F. (2019). Why is there so much more research on vision than on any other sensory modality? Frontiers in Psychology, 10, 2246. https://doi.org/10.3389/fpsyg.2019.02246
    Jacola, L. M., Willard, V. W., Ashford, J. M., Ogg, R. J., Scoggins, M. A., Jones, M. M., Wu, S., & Conklin, H. M. (2014). Clinical utility of the N-back task in functional neuroimaging studies of working memory. Journal of Clinical and Experimental Neuropsychology, 36(8), 875-886. https://doi.org/10.1080/13803395.2014.953039
    Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short-and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 10081-10086. https://doi.org/10.1073/pnas.1103228108
    Jalilvand, M., Samadi, H., & Dana, A. (2021). Effectiveness of physical activity course on preschool children’s working memory: Emphasizing environmental change. The Scientific Journal of Rehabilitation Medicine, 10(5), 936-947. https://doi.org/10.32598/SJRM.10.5.9
    Jiang, D., Liu, Z., & Sun, G. (2021). The effect of yoga meditation practice on young adults’ inhibitory control: An fNIRS study. Frontiers in Human Neuroscience, 15, 725233. https://doi.org/10.3389/fnhum.2021.725233
    Kaligal, C., Kanthi, A., Vidyashree, M., Krishna, D., Raghuram, N., Hongasandra Ramarao, N., & Deepeshwar, S. (2023). Prefrontal oxygenation and working memory in patients with type 2 diabetes mellitus following integrated yoga: A randomized controlled trial. Acta Diabetologica, 60, 951-961. https://doi.org/10.1007/s00592-023-02085-0
    Kao, S. C., Westfall, D. R., Parks, A. C., Pontifex, M. B., & Hillman, C. H. (2017). Muscular and aerobic fitness, working memory, and academic achievement in children. Medicine & Science in Sports & Exercise, 49(3), 500-508. https://doi.org/10.1249/MSS.0000000000001132
    Karch, D., Albers, L., Renner, G., Lichtenauer, N., & von Kries, R. (2013). The efficacy of cognitive training programs in children and adolescents: A meta-analysis. Deutsches Ärzteblatt International, 110(39), 634-652. https://doi.org/10.3238/arztebl.2013.0643
    Kasai, D., Parfitt, G., Tarca, B., Eston, R., & Tsiros, M. D. (2021). The use of ratings of perceived exertion in children and adolescents: A scoping review. Sports Medicine, 51, 33-50. https://doi.org/10.1007/s40279-020-01374-w
    Kessler, Y., & Oberauer, K. (2015). Forward scanning in verbal working memory updating. Psychonomic Bulletin & Review, 22, 1770-1776. https://doi.org/10.3758/s13423-015-0853-0
    Kofler, M. J., Harmon, S. L., Aduen, P. A., Day, T. N., Austin, K. E., Spiegel, J. A., Irwin, L., & Sarver, D. E. (2018). Neurocognitive and behavioral predictors of social problems in ADHD: A Bayesian framework. Neuropsychology, 32(3), 344-355. https://doi.org/10.1037/neu0000416
    Koutsandreou, F., Wegner, M., Niemann, C., & Budde, H. (2016). Effects of motor versus cardiovascular exercise training on children’s working memory. Medicine & Science in Sports & Exercise, 48(6), 1144-1152. https://doi.org/10.1249/MSS.000000000000869
    Kowiański, P., Lietzau, G., Czuba, E., Waśkow, M., Steliga, A., & Moryś, J. (2018). BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and Molecular Neurobiology, 38, 579-593. https://doi.org/10.1007/s10571-017-0510-4
    Lai, Y., Wang, Z., Yue, G. H., & Jiang, C. (2020). Determining whether tennis benefits the updating function in young children: A functional near-Infrared spectroscopy study. Applied Sciences, 10(1), 407. https://doi.org/10.3390/app10010407
    Li, K., Dong, G., & Gao, Q. (2023). Martial arts enhances working memory and attention in school-aged children: A functional near-infrared spectroscopy study. Journal of Experimental Child Psychology, 235, 105725. https://doi.org/10.1016/j.jecp.2023.105725
    Li, L., Zhang, J., Cao, M., Hu, W., Zhou, T., Huang, T., Chen, P., & Quan, M. (2020). The effects of chronic physical activity interventions on executive functions in children aged 3–7 years: A meta-analysis. Journal of Science and Medicine in Sport, 23(10), 949-954. https://doi.org/10.1016/j.jsams.2020.03.007
    Lin, C. C., Hsieh, S. S., Chang, Y. K., Huang, C. J., Hillman, C. H., & Hung, T. M. (2021). Up-regulation of proactive control is associated with beneficial effects of a childhood gymnastics program on response preparation and working memory. Brain and Cognition, 149, 105695. https://doi.org/10.1016/j.bandc.2021.105695
    Lin, C. C., Hsieh, S. S., Huang, C. J., Kao, S. C., Chang, Y. K., & Hung, T. M. (2023). The unique contribution of motor ability to visuospatial working memory in school‐age children: Evidence from event‐related potentials. Psychophysiology, 60(3), e14182. https://doi.org/10.1111/psyp.14182
    Lloyd-Fox, S., Papademetriou, M., Darboe, M. K., Everdell, N. L., Wegmuller, R., Prentice, A. M., Moore, S. E., & Elwell, C. E. (2014). Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa. Scientific Reports, 4, 4740. https://doi.org/10.1038/srep04740
    Logie, R. H. (2014). Visuo-spatial working memory. Psychology Press. https://doi.org/10.4324/9781315804743
    Mücke, M., Andrä, C., Gerber, M., Pühse, U., & Ludyga, S. (2018). Moderate-to-vigorous physical activity, executive functions and prefrontal brain oxygenation in children: A functional near-infrared spectroscopy study. Journal of Sports Sciences, 36(6), 630-636. https://doi.org/10.1080/02640414.2017.1326619
    Mahar, M. T., Guerieri, A. M., Hanna, M. S., & Kemble, C. D. (2011). Estimation of aerobic fitness from 20-m multistage shuttle run test performance. American Journal of Preventive Medicine, 41(4), S117-S123. https://doi.org/10.1016/j.amepre.2011.07.008
    Mahar, M. T., Rowe, D. A., Parker, C. R., Mahar, F. J., Dawson, D. M., & Holt, J. E. (1997). Criterion-referenced and norm-referenced agreement between the mile run/walk and PACER. Measurement in Physical Education and Exercise Science, 1(4), 245-258. https://doi.org/10.1207/s15327841mpee0104_4
    Mann, T., Lamberts, R. P., & Lambert, M. I. (2013). Methods of prescribing relative exercise intensity: Physiological and practical considerations. Sports Medicine, 43, 613-625. https://doi.org/10.1007/s40279-013-0045-x
    Mardasangi Dulabi, S., Ghasemian, M., & Aslankhani, M. (2020). The effects of school-based physical exercise with different cognitive loads on executive functions. Sport Sciences and Health Research, 12(1), 47-56. https://doi.org/10.32598/JESM.12.1.5
    American College of Sports Medicine. (2013). ACSM's Guidelines for Exercise Testing and Prescription. Lippincott williams & wilkins.
    Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer” evidence from a meta-analytic review. Perspectives on Psychological Science, 11(4), 512-534. https://doi.org/10.1177/1745691616635612
    Meredith, M. D., & Welk, G. (2010). Fitnessgram and Activitygram Test Administration Manual-Updated 4th Edition. Human Kinetics.
    Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
    Monden, Y., Dan, H., Nagashima, M., Dan, I., Kyutoku, Y., Okamoto, M., Yamagata, T., Momoi, M. Y., & Watanabe, E. (2012). Clinically-oriented monitoring of acute effects of methylphenidate on cerebral hemodynamics in ADHD children using fNIRS. Clinical Neurophysiology, 123(6), 1147-1157. https://doi.org/10.1016/j.clinph.2011.10.006
    Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic bulletin & review, 18, 46-60. https://doi.org/10.3758/s13423-010-0034-0
    Mueller, S. C., Shechner, T., Rosen, D., Nelson, E. E., Pine, D. S., & Ernst, M. (2015). Incidental threat during visuospatial working memory in adolescent anxiety: An emotional memory‐guided saccade task. Depression and Anxiety, 32, 289-295. https://doi.org/10.1002/da.22350
    Namiecińska, M., Marciniak, K., & Nowak, J. (2005). VEGF as an angiogenic, neurotrophic, and neuroprotective factor. Postepy Higieny i Medycyny Doswiadczalnej (Online), 59, 573-583.
    Nishiguchi, S., Yamada, M., Tanigawa, T., Sekiyama, K., Kawagoe, T., Suzuki, M., Yoshikawa, S., Abe, N., Otsuka, Y., & Nakai, R. (2015). A 12‐week physical and cognitive exercise program can improve cognitive function and neural efficiency in community‐dwelling older adults: A randomized controlled trial. Journal of the American Geriatrics Society, 63(7), 1355-1363. https://doi.org/10.1111/jgs.13481
    O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283-328. https://doi.org/10.1162/089976606775093909
    Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
    Olds, T., Tomkinson, G., Léger, L., & Cazorla, G. (2006). Worldwide variation in the performance of children and adolescents: An analysis of 109 studies of the 20-m shuttle run test in 37 countries. Journal of Sports Sciences, 24(10), 1025-1038. https://doi.org/10.1080/02640410500432193
    Oppici, L., Rudd, J. R., Buszard, T., & Spittle, S. (2020). Efficacy of a 7-week dance (RCT) PE curriculum with different teaching pedagogies and levels of cognitive challenge to improve working memory capacity and motor competence in 8–10 years old children. Psychology of Sport and Exercise, 50, 101675. https://doi.org/10.1016/j.psychsport.2020.101675
    Park, J. H. (2021). Effects of cognitive-physical dual-task training on executive function and activity in the prefrontal cortex of older adults with mild cognitive impairment. Brain & Neurorehabilitation, 14(3), e23. https://doi.org/10.12786/bn.2021.14.e23
    Pellegrini-Laplagne, M., Dupuy, O., Sosner, P., & Bosquet, L. (2023). Effect of simultaneous exercise and cognitive training on executive functions, baroreflex sensitivity, and pre-frontal cortex oxygenation in healthy older adults: A pilot study. GeroScience, 45, 119-140. https://doi.org/10.1007/s11357-022-00595-3
    Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences, 91(22), 10625-10629. https://doi.org/10.1073/pnas.91.22.10625
    Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. (2020). The present and future use of functional near‐infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 5-29. https://doi.org/10.1111/nyas.13948
    Raichlen, D. A., & Alexander, G. E. (2017). Adaptive capacity: An evolutionary neuroscience model linking exercise, cognition, and brain health. Trends in Neurosciences, 40(7), 408-421. https://doi.org/10.1016/j.tins.2017.05.001
    Riggs, N. R., Jahromi, L. B., Razza, R. P., Dillworth-Bart, J. E., & Mueller, U. (2006). Executive function and the promotion of social–emotional competence. Journal of Applied Developmental Psychology, 27(4), 300-309. https://doi.org/10.1016/j.appdev.2006.04.002
    Sala, G., & Gobet, F. (2019). Cognitive training does not enhance general cognition. Trends in Cognitive Sciences, 23(1), 9-20. https://doi.org/10.1016/j.tics.2018.10.004
    Schmidt, M., Jäger, K., Egger, F., Roebers, C. M., & Conzelmann, A. (2015). Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: A group-randomized controlled trial. Journal of Sport and Exercise Psychology, 37(6), 575-591. http://dx.doi.org/10.1123/jsep.2015-0069
    Serra, L., Raimondi, S., Di Domenico, C., Maffei, S., Lardone, A., Liparoti, M., Sorrentino, P., Caltagirone, C., Petrosini, L., & Mandolesi, L. (2021). The beneficial effects of physical exercise on visuospatial working memory in preadolescent children. AIMS Neuroscience, 8(4), 496-509. https://doi.org/10.3934/Neuroscience.2021026
    Shrestha, B., & Dunn, L. (2019). The declaration of Helsinki on medical research involving human subjects: A review of seventh revision. Journal of Nepal Health Research Council, 17(4), 548-552. https://doi.org/10.33314/jnhrc.v17i4.1042
    Sjöwall, D., Hertz, M., & Klingberg, T. (2017). No long-term effect of physical activity intervention on working memory or arithmetic in preadolescents. Frontiers in Psychology, 8, 1342. https://doi.org/10.3389/fpsyg.2017.01342
    Sorkin, R. D. (1999). Spreadsheet signal detection. Behavior Research Methods, Instruments, & Computers, 31, 46-54. https://doi.org/10.3758/BF03207691
    St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology, 59(4), 745-759. https://doi.org/10.1080/17470210500162854
    Stillman, C. M., Cohen, J., Lehman, M. E., & Erickson, K. I. (2016). Mediators of physical activity on neurocognitive function: A review at multiple levels of analysis. Frontiers in Human Neuroscience, 10, 626. https://doi.org/10.3389/fnhum.2016.00626
    Swanson, H. L., & Alloway, T. P. (2012). Working memory, learning, and academic achievement. In K. R. Harris, S. Graham, T. Urdan, C. B. McCormick, G. M. Sinatra, & J. Sweller (Eds.), APA Educational Psychology Handbook, Vol. 1. Theories, constructs, and critical issues (pp. 327–366). American Psychological Association. https://doi.org/10.1037/13273-012
    Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. https://doi.org/10.1016/0364-0213(88)90023-7
    Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251-296. https://doi.org/10.1023/A:1022193728205
    Thomas, S., Reading, J., & Shephard, R. J. (1992). Revision of the physical activity readiness questionnaire (PAR-Q). Canadian Journal of Sport Sciences, 17(4), 338-345.
    Titz, C., & Karbach, J. (2014). Working memory and executive functions: Effects of training on academic achievement. Psychological Research, 78, 852-868. https://doi.org/10.1007/s00426-013-0537-1
    Tsai, C. L., Pan, C. Y., Chen, F. C., & Tseng, Y. T. (2017). Open-and closed-skill exercise interventions produce different neurocognitive effects on executive functions in the elderly: A 6-month randomized, controlled trial. Frontiers in Aging Neuroscience, 9, 294. https://doi.org/10.3389/fnagi.2017.00294
    Varness, T., Carrel, A. L., Eickhoff, J. C., & Allen, D. B. (2009). Reliable prediction of insulin resistance by a school-based fitness test in middle-school children. International Journal of Pediatric Endocrinology, 2009, 487804. https://doi.org/10.1155/2009/487804
    Vazou, S., Pesce, C., Lakes, K., & Smiley-Oyen, A. (2019). More than one road leads to Rome: A narrative review and meta-analysis of physical activity intervention effects on cognition in youth. International Journal of Sport and Exercise Psychology, 17(2), 153-178. https://doi.org/10.1080/1612197X.2016.1223423
    Willoughby, B. L. (2019). Intellectual disabilities. The Massachusetts General Hospital Guide to Learning Disabilities: Assessing Learning Needs of Children and Adolescents, 119-132. https://doi.org/10.1007/978-3-319-98643-2
    Xiang, M., Li, G., Ye, J., Wu, M., Xu, R., & Hu, M. (2023). Effects of combined physical and cognitive training on executive function of adolescent shooting athletes: A functional near-infrared spectroscopy study. Sports Medicine and Health Science, 5(3), 220-228. https://doi.org/10.1016/j.smhs.2023.02.004
    Yang, Y., Chen, T., Shao, M., Yan, S., Yue, G. H., & Jiang, C. (2020). Effects of Tai Chi Chuan on inhibitory control in elderly women: An fNIRS study. Frontiers in Human Neuroscience, 13, 476. https://doi.org/10.3389/fnhum.2019.00476
    Yeung, M. K. (2021). An optical window into brain function in children and adolescents: A systematic review of functional near-infrared spectroscopy studies. Neuroimage, 227, 117672. https://doi.org/10.1016/j.neuroimage.2020.117672
    Yeung, M. K., & Han, Y. M. (2023). Changes in task performance and frontal cortex activation within and over sessions during the n-back task. Scientific Reports, 13, 3363. https://doi.org/10.1038/s41598-023-30552-9
    Zhao, F., Tomita, M., & Dutta, A. (2023). Operational modal analysis of near-infrared spectroscopy measure of 2-month exercise intervention effects in sedentary older adults with diabetes and cognitive impairment. Brain Sciences, 13(7), 1099. https://doi.org/10.3390/brainsci13071099
    Zhu, Q., Deng, J., Yao, M., Xu, C., Liu, D., Guo, L., & Zhu, Y. (2023). Effects of physical activity on visuospatial working memory in healthy individuals: A systematic review and meta-analysis. Frontiers in Psychology, 14, 1103003. https://doi.org/10.3389/fpsyg.2023.1103003

    下載圖示
    QR CODE